Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Michael Epstein*1 Boris Hanin ${ }^{2}$ Erik Lundberg ${ }^{3}$
${ }^{1}$ Colorado State University
${ }^{2}$ Texas A\&M University
${ }^{3}$ Florida Atlantic University
Postdoc Seminar
October 12, 2020

Outline

■ Lemniscate trees of random polynomials

- Asymptotic enumeration of Morse functions on the 2-sphere

Introduction

> Problem: Understand the "landscape" of level sets of the modulus of a polynomial.

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.
■ Lemniscate configuration of $P:=$ homeomorphism class of the union of the singular level sets of P

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.
■ Lemniscate configuration of $P:=$ homeomorphism class of the union of the singular level sets of P

- P is lemniscate generic if P^{\prime} has n distinct zeros y_{1}, \ldots, y_{n} such that:

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.
■ Lemniscate configuration of $P:=$ homeomorphism class of the union of the singular level sets of P

- P is lemniscate generic if P^{\prime} has n distinct zeros y_{1}, \ldots, y_{n} such that:
$1 \quad P\left(y_{i}\right) \neq 0$

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.
■ Lemniscate configuration of $P:=$ homeomorphism class of the union of the singular level sets of P

- P is lemniscate generic if P^{\prime} has n distinct zeros y_{1}, \ldots, y_{n} such that:

1. $P\left(y_{i}\right) \neq 0$

2 $\left|P\left(y_{i}\right)\right|=\left|P\left(y_{j}\right)\right|$ iff $i=j$

Introduction

Let $P \in \mathbb{C}[z]$ of degree $n+1, n \in \mathbb{Z}^{+}$.
■ Lemniscate configuration of $P:=$ homeomorphism class of the union of the singular level sets of P

- P is lemniscate generic if P^{\prime} has n distinct zeros y_{1}, \ldots, y_{n} such that:

1. $P\left(y_{i}\right) \neq 0$
$2\left|P\left(y_{i}\right)\right|=\left|P\left(y_{j}\right)\right|$ iff $i=j$

- If P is lemniscate generic it has n singular lemniscates, each with one singular connected component passing through a critical point

Introduction

- F. Catanese and M. Paluszny (1991): Classified/enumerated generic configurations

Introduction

- F. Catanese and M. Paluszny (1991): Classified/enumerated generic configurations
- A. Lerario and E. Lundberg (2016): Study the lemniscate configuration for a random polynomial

Introduction

- F. Catanese and M. Paluszny (1991): Classified/enumerated generic configurations
- A. Lerario and E. Lundberg (2016): Study the lemniscate configuration for a random polynomial

Example

Figure: $f(z)=\frac{1}{7} z^{7}-\frac{27}{28} z^{6}-\frac{419}{70} z^{5}+\frac{209}{8} z^{4}+\frac{1415}{14} z^{3}+\frac{809}{14} z^{2}-60 z$

Michael Epstein*, Boris Hanin, Erik Lundberg
Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Connection to Combinatorics

Catanese and Paluszny show that generic lemniscate configurations of degree $n+1$ polynomials are in one-to-one correspondence with the collection \mathcal{T}_{n} of "lemniscate trees" on n vertices, i.e. labeled, rooted trees in which:

Connection to Combinatorics

Catanese and Paluszny show that generic lemniscate configurations of degree $n+1$ polynomials are in one-to-one correspondence with the collection \mathcal{T}_{n} of "lemniscate trees" on n vertices, i.e. labeled, rooted trees in which:
1 vertices have at most 2 children

Connection to Combinatorics

Catanese and Paluszny show that generic lemniscate configurations of degree $n+1$ polynomials are in one-to-one correspondence with the collection \mathcal{T}_{n} of "lemniscate trees" on n vertices, i.e. labeled, rooted trees in which:

1 vertices have at most 2 children
2 vertex labels increase along any path directed away from the root

Example

The Problem

- Want to understand a "typical" lemniscate tree

The Problem

■ Want to understand a "typical" lemniscate tree
■ How much branching?

The Problem

- Want to understand a "typical" lemniscate tree

■ How much branching?

- Questions:

The Problem

- Want to understand a "typical" lemniscate tree

■ How much branching?

- Questions:

1 What is the distribution of nodes with 2 children among trees in \mathcal{T}_{n} ?

The Problem

■ Want to understand a "typical" lemniscate tree

- How much branching?
- Questions:

1 What is the distribution of nodes with 2 children among trees in \mathcal{T}_{n} ?
2 How many nodes with 2 children should we expect in the lemniscate tree of a random polynomial?

Example: Lemniscate trees with 40 vertices

Figure: frequency of $N_{2}=k, n=40$

The Generating Function

F. Catanese, R. Miranda, D. Zagier, and E. Bombieri give some assistance in studying the combinatorial class of lemniscate trees:

The Generating Function

F. Catanese, R. Miranda, D. Zagier, and E. Bombieri give some assistance in studying the combinatorial class of lemniscate trees:

■ $a_{n, k}:=\#$ trees in \mathcal{T}_{n} with exactly k nodes with 2 children

The Generating Function

F. Catanese, R. Miranda, D. Zagier, and E. Bombieri give some assistance in studying the combinatorial class of lemniscate trees:

■ $a_{n, k}:=\#$ trees in \mathcal{T}_{n} with exactly k nodes with 2 children
$\square F(z, u):=\sum_{n, k=0}^{\infty} \frac{a_{n, k}}{n!} u^{k} z^{n}$

The Generating Function

F. Catanese, R. Miranda, D. Zagier, and E. Bombieri give some assistance in studying the combinatorial class of lemniscate trees:

■ $a_{n, k}:=\#$ trees in \mathcal{T}_{n} with exactly k nodes with 2 children
$\square F(z, u):=\sum_{n, k=0}^{\infty} \frac{a_{n, k}}{n!} u^{k} z^{n}$

- They show:

$$
F(z, u)=\left[\cosh \left(\frac{z}{2} \sqrt{1-2 u}\right)-\frac{\sinh \left(\frac{z}{2} \sqrt{1-2 u}\right)}{\sqrt{1-2 u}}\right]^{-2}
$$

Analytic Combinatorics

- Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series

Analytic Combinatorics

- Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series
■ Singularity analysis

Analytic Combinatorics

- Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series
- Singularity analysis

■ Distance to the nearest singularity tells us the exponential order

Analytic Combinatorics

- Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series
- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor

Analytic Combinatorics

- Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series
- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor

Singularity Analysis

- For $u=1: ~ F(z, 1)=[1-\sin z]^{-1}$

Singularity Analysis

■ For $u=1$: $F(z, 1)=[1-\sin z]^{-1}$

- The unique nearest singularity is a pole of order 2 at $\pi / 2$

Singularity Analysis

- For $u=1$: $F(z, 1)=[1-\sin z]^{-1}$
- The unique nearest singularity is a pole of order 2 at $\pi / 2$
- $F(z, 1)=\frac{8}{(\pi-2 z)^{2}}+G(z)$, where $G(z)$ is analytic in a disk of radius $3 \pi / 2$ about the origin

Singularity Analysis

- For $u=1$: $F(z, 1)=[1-\sin z]^{-1}$
- The unique nearest singularity is a pole of order 2 at $\pi / 2$
- $F(z, 1)=\frac{8}{(\pi-2 z)^{2}}+G(z)$, where $G(z)$ is analytic in a disk of radius $3 \pi / 2$ about the origin
■ Use Cauchy estimates for the analytic part: $\left[z^{n}\right] G(z)=O\left(R^{-n}\right)$ for any $\frac{\pi}{2}<R<3 \pi / 2$

Singularity Analysis

- For $u=1$: $F(z, 1)=[1-\sin z]^{-1}$
- The unique nearest singularity is a pole of order 2 at $\pi / 2$
- $F(z, 1)=\frac{8}{(\pi-2 z)^{2}}+G(z)$, where $G(z)$ is analytic in a disk of radius $3 \pi / 2$ about the origin
■ Use Cauchy estimates for the analytic part:
$\left[z^{n}\right] G(z)=O\left(R^{-n}\right)$ for any $\frac{\pi}{2}<R<3 \pi / 2$
- So $\left[z^{n}\right] F(z, 1)=\frac{8(n+1)}{\pi^{2}}\left(\frac{2}{\pi}\right)^{n}+O\left(R^{-n}\right)$

Singularity Analysis

- For $u=1$: $F(z, 1)=[1-\sin z]^{-1}$
- The unique nearest singularity is a pole of order 2 at $\pi / 2$
- $F(z, 1)=\frac{8}{(\pi-2 z)^{2}}+G(z)$, where $G(z)$ is analytic in a disk of radius $3 \pi / 2$ about the origin
- Use Cauchy estimates for the analytic part: $\left[z^{n}\right] G(z)=O\left(R^{-n}\right)$ for any $\frac{\pi}{2}<R<3 \pi / 2$
- So $\left[z^{n}\right] F(z, 1)=\frac{8(n+1)}{\pi^{2}}\left(\frac{2}{\pi}\right)^{n}+O\left(R^{-n}\right)$

■ Thus $\left|\mathcal{T}_{n}\right|=n!\left[z^{n}\right] F(z, 1) \sim \frac{8}{\pi^{2}}\left(\frac{2}{\pi}\right)^{n}(n+1)$!

Analytic Combinatorics

■ Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series

- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor

Analytic Combinatorics

■ Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series

- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor
- Perturbed singularity analysis

Analytic Combinatorics

■ Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series

- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor
- Perturbed singularity analysis

■ For bivariate generating functions (treating one variable as a parameter)

Analytic Combinatorics

■ Basic idea: Use complex analysis to get information about the asymptotic rate of growth of the coefficients of a power series

- Singularity analysis
- Distance to the nearest singularity tells us the exponential order
- Nature of the nearest singularity gives info about subexponential factor
- Perturbed singularity analysis

■ For bivariate generating functions (treating one variable as a parameter)

- The example at hand falls into the "movable singularity schema"

Perturbed Singularity Analysis

- For u in a neighborhood of 1 , the nearest singularity of $F(z, u)$ moves, namely to $\rho(u)=\frac{1}{\sqrt{1-2 u}} \log \left(\frac{1+\sqrt{1-2 u}}{1-\sqrt{1-2 u}}\right)$, but it's nature as an order two pole remains the same

Perturbed Singularity Analysis

- For u in a neighborhood of 1 , the nearest singularity of $F(z, u)$ moves, namely to $\rho(u)=\frac{1}{\sqrt{1-2 u}} \log \left(\frac{1+\sqrt{1-2 u}}{1-\sqrt{1-2 u}}\right)$, but it's nature as an order two pole remains the same
- This ultimately gives rise to a Gaussian limit law:

Distribution of nodes with 2 children in \mathcal{T}_{n}

Theorem 1

The random variable $N_{2}\left(T_{n}\right)$ (where $T_{n} \in \mathcal{T}_{n}$ is chosen uniformly at random) converges in distribution to a Gaussian variable with a speed of convergence that is $O\left(n^{-1 / 2}\right)$. The mean and variance are asymptotically $\left(1-\frac{2}{\pi}\right) n$ and $\left(\frac{4}{\pi^{2}}+\frac{2}{\pi}-1\right) n$ respectively.

Figure: frequency of $N_{2}=k, n=40$

Figure: $N\left(\left(40-\frac{80}{\pi}\right),\left(\frac{160}{\pi^{2}}+\frac{80}{\pi}-40\right)\right)$

Random Polynomials

In contrast to the previous result, computer simulations show that for different models of random polynomials, such as the Kostlan ensemble, the corresponding lemniscate trees have very little branching. In particular, one can prove the following theorem:

Random Polynomials

In contrast to the previous result, computer simulations show that for different models of random polynomials, such as the Kostlan ensemble, the corresponding lemniscate trees have very little branching. In particular, one can prove the following theorem:

Theorem 2

Let p_{N} be a random polynomial of degree N whose zeros are drawn i.i.d. from a fixed probability measure μ on S^{2} that has a bounded density with respect to the uniform (Haar) measure. Then for every $\epsilon>0$ there exists C_{ϵ} so that the number Y_{N} of nodes with two children in the lemniscate tree associated to p_{N} satisfies

$$
\mathbb{E} Y_{N} \leq C_{\epsilon} N^{\frac{1}{2}+\epsilon}
$$

Small Petal Phenomenon

Random Polynomials

Do any models of random polynomials have trees that resemble the combinatorial baseline?

Random Polynomials

Do any models of random polynomials have trees that resemble the combinatorial baseline?

■ Random linear combinations of Chebyshev polynomials:

$$
p(z)=\sum_{k=0}^{n} a_{k} T_{k}(z), a_{k} \sim N(0,1) .
$$

Random Polynomials

Do any models of random polynomials have trees that resemble the combinatorial baseline?

■ Random linear combinations of Chebyshev polynomials: $p(z)=\sum_{k=0}^{n} a_{k} T_{k}(z), a_{k} \sim N(0,1)$.

- rich nesting structure

Random Polynomials

Do any models of random polynomials have trees that resemble the combinatorial baseline?

■ Random linear combinations of Chebyshev polynomials: $p(z)=\sum_{k=0}^{n} a_{k} T_{k}(z), a_{k} \sim N(0,1)$.

■ rich nesting structure

- not generally generic

Random Linear Combination of Chebyshev Polynomials

Michael Epstein*, Boris Hanin, Erik Lundberg
Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Random Polynomials

Instead we consider a random perturabtion of a Chebyshev polynomial: $p(z)=T_{n}(z)+\frac{1}{n} \sum_{k=0}^{n-1} b_{k} T_{k}(z)$, where the b_{k} are independently chosen to be 1 or -1 with equal probability.

Randomly Perturbed Chebyshev Polynomials

Randomly Perturbed Chebyshev Polynomials

Computer experiments: the lemniscate tree has $\approx n / 3$ vertices with two children.

Morse Functions

Let M be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $x \in M$.

- The differential of f at x is a linear map $d f_{x}: T_{x} M \rightarrow \mathbb{R}$ defined on the tangent space $T_{x} M$ to M at x.

Morse Functions

Let M be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $x \in M$.

- The differential of f at x is a linear map $d f_{x}: T_{x} M \rightarrow \mathbb{R}$ defined on the tangent space $T_{x} M$ to M at x.
$\square x$ is a critical point of f if $d f_{x}=0$.

Morse Functions

Let M be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $x \in M$.

- The differential of f at x is a linear map $d f_{x}: T_{x} M \rightarrow \mathbb{R}$ defined on the tangent space $T_{x} M$ to M at x.
■ x is a critical point of f if $d f_{x}=0$.
- The Hessian of f at x is a symmetric bilinear map $H_{f, x}: T_{x} M \times T_{x} M \rightarrow \mathbb{R}$.

Morse Functions

Let M be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $x \in M$.

- The differential of f at x is a linear map $d f_{x}: T_{x} M \rightarrow \mathbb{R}$ defined on the tangent space $T_{x} M$ to M at x.
■ x is a critical point of f if $d f_{x}=0$.
- The Hessian of f at x is a symmetric bilinear map $H_{f, x}: T_{x} M \times T_{x} M \rightarrow \mathbb{R}$.
- If x is a critical point of f, we say it is nondegenerate if $H_{f, x}$ is nondegenerate, i.e. if

$$
H_{f, x}(X, Y)=0 \forall Y \in T_{x} M \Longleftrightarrow X=0
$$

Morse Functions

Let M be a differentiable manifold, $f: M \rightarrow \mathbb{R}$ be a smooth function, and $x \in M$.

- The differential of f at x is a linear map $d f_{x}: T_{x} M \rightarrow \mathbb{R}$ defined on the tangent space $T_{x} M$ to M at x.
■ x is a critical point of f if $d f_{x}=0$.
- The Hessian of f at x is a symmetric bilinear map $H_{f, x}: T_{x} M \times T_{x} M \rightarrow \mathbb{R}$.
- If x is a critical point of f, we say it is nondegenerate if $H_{f, x}$ is nondegenerate, i.e. if

$$
H_{f, x}(X, Y)=0 \forall Y \in T_{x} M \Longleftrightarrow X=0
$$

■ f is a Morse function if all of its critical points are nondegenerate.

Facts About Morse Functions

- There exists a Morse function on differentiable manifold.

Facts About Morse Functions

- There exists a Morse function on differentiable manifold.
- The critical points of any Morse function are isolated.

Facts About Morse Functions

- There exists a Morse function on differentiable manifold.
- The critical points of any Morse function are isolated.

■ If f is a Morse function on a compact differentiable manifold M, then f has at least one (at least 2 if $\operatorname{dim} M>0$) and only finitely many critical points.

Geometric Equivalence

Two Morse functions $f, g: M \rightarrow \mathbb{R}$ are said be geometrically equivalent if there are orientation preserving diffeomorphisms $R: M \rightarrow M$ and $L: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g=L \circ f \circ R
$$

This is an equivalence relation on the set of Morse functions on M.

Morse Trees

A Morse tree of order n is a pair (Γ, φ), where Γ is a graph with $2 \mathrm{n}+2$ vertices, and φ is an injective real-valued labeling of the vertices of Γ, such that

Morse Trees

A Morse tree of order n is a pair (Γ, φ), where Γ is a graph with $2 \mathrm{n}+2$ vertices, and φ is an injective real-valued labeling of the vertices of Γ, such that

1 every vertex has degree 1 or 3 , and

Morse Trees

A Morse tree of order n is a pair (Γ, φ), where Γ is a graph with $2 \mathrm{n}+2$ vertices, and φ is an injective real-valued labeling of the vertices of Γ, such that

1 every vertex has degree 1 or 3 , and
$\sqrt{2}$ every evertex of degree 3 has a neighbor with a lower label and one with a higher label.

Morse Trees

A Morse tree of order n is a pair (Γ, φ), where Γ is a graph with $2 \mathrm{n}+2$ vertices, and φ is an injective real-valued labeling of the vertices of Γ, such that

1 every vertex has degree 1 or 3 , and
2 every evertex of degree 3 has a neighbor with a lower label and one with a higher label.
The level function associated to φ is the function $\ell_{\varphi}: V(\Gamma) \rightarrow \mathbb{Z}$ given by $\ell_{\varphi}(v)=|\{u \in V(\Gamma): \varphi(u) \leq \varphi(v)\}|$.

Morse Trees

A Morse tree of order n is a pair (Γ, φ), where Γ is a graph with $2 \mathrm{n}+2$ vertices, and φ is an injective real-valued labeling of the vertices of Γ, such that

1 every vertex has degree 1 or 3 , and
$\sqrt{2}$ every evertex of degree 3 has a neighbor with a lower label and one with a higher label.
The level function associated to φ is the function $\ell_{\varphi}: V(\Gamma) \rightarrow \mathbb{Z}$ given by $\ell_{\varphi}(v)=|\{u \in V(\Gamma): \varphi(u) \leq \varphi(v)\}|$. Two Morse trees $\left(\Gamma_{1}, \varphi_{1}\right)$ and $\left(\Gamma_{2}, \varphi_{2}\right)$ are isomorphic if there is a graph isomorphism $\beta: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\ell_{\varphi_{2}}(\beta(v))=\ell_{\varphi_{1}}(v)$ for all $v \in V\left(\Gamma_{1}\right)$.

Connecting Morse functions with Morse Trees

- We can associate to any Morse function on S^{2} a Morse tree, and to any Morse tree a Morse function on S^{2}.

Connecting Morse functions with Morse Trees

■ We can associate to any Morse function on S^{2} a Morse tree, and to any Morse tree a Morse function on S^{2}.

- Moreover, two Morse functions on S^{2} are geometrically equivalent if an only if their associated Morse trees are isomorphic.

The Generating Function

Liviu Nicolaescu established a two-parameter recurrence for enumerating Morse trees, from which he was able to derive a generating function for the number of geometric equivalence classes of Morse functions on S^{2}. Specifically, he proved

The Generating Function

Theorem (Nicolaescu)

Let $g(n)$ be the number of geometric equivalence classes of Morse functions on the 2 -sphere with n saddle points and define

$$
\xi(t)=\sum_{n \geq 0} g(n) \frac{t^{2 n+1}}{(2 n+1)!}
$$

Then $\xi(t)$ is the compositional inverse of the function

$$
\theta(s)=s \int_{0}^{1} \frac{1}{\sqrt{\left(1-s^{2} x^{2} / 2\right)^{2}+2 s^{2} x}} d x
$$

The Generating Function

Theorem (Nicolaescu)

Let $g(n)$ be the number of geometric equivalence classes of Morse functions on the 2 -sphere with n saddle points and define

$$
\xi(t)=\sum_{n \geq 0} g(n) \frac{t^{2 n+1}}{(2 n+1)!}
$$

Then $\xi(t)$ is the compositional inverse of the function

$$
\theta(s)=s \int_{0}^{1} \frac{1}{\sqrt{\left(1-s^{2} x^{2} / 2\right)^{2}+2 s^{2} x}} d x
$$

The main ingredients in deriving the asymptotic for $g(n)$ are the Lagrange inversion theorem and the saddle point method.

Lagrange Inversion

We can extract the coefficients of $\xi(t)$ from it inverse using the Lagrange inversion theorem:

Lagrange inversion theorem

If ϕ is analytic with $\phi(0) \neq 0$ and $f(w)=\frac{w}{\phi(w)}$, then $\left[z^{n}\right] f^{-1}(z)=\frac{1}{n}\left[w^{n-1}\right] \phi(w)^{n}$.

Lagrange Inversion

We can extract the coefficients of $\xi(t)$ from it inverse using the Lagrange inversion theorem:

Lagrange inversion theorem

If ϕ is analytic with $\phi(0) \neq 0$ and $f(w)=\frac{w}{\phi(w)}$, then $\left[z^{n}\right] f^{-1}(z)=\frac{1}{n}\left[w^{n-1}\right] \phi(w)^{n}$.
This yields $\frac{g(n)}{(2 n+1)!}=\left[t^{2 n+1}\right] \xi(t)=\frac{1}{2 n+1}\left[s^{2 n}\right]\left(\frac{s}{\theta(s)}\right)^{2 n+1}$.

Lagrange Inversion

We can extract the coefficients of $\xi(t)$ from it inverse using the Lagrange inversion theorem:

Lagrange inversion theorem

If ϕ is analytic with $\phi(0) \neq 0$ and $f(w)=\frac{w}{\phi(w)}$, then $\left[z^{n}\right] f^{-1}(z)=\frac{1}{n}\left[w^{n-1}\right] \phi(w)^{n}$.
This yields $\frac{g(n)}{(2 n+1)!}=\left[t^{2 n+1}\right] \xi(t)=\frac{1}{2 n+1}\left[s^{2 n}\right]\left(\frac{s}{\theta(s)}\right)^{2 n+1}$. Now, finding an asymptotic for $\left[s^{2 n}\right]\left(\frac{s}{\theta(s)}\right)^{2 n+1}$ will allow us to compute the asymtotic for $g(n)$.

Lagrange Inversion

We can extract the coefficients of $\xi(t)$ from it inverse using the Lagrange inversion theorem:

Lagrange inversion theorem

If ϕ is analytic with $\phi(0) \neq 0$ and $f(w)=\frac{w}{\phi(w)}$, then $\left[z^{n}\right] f^{-1}(z)=\frac{1}{n}\left[w^{n-1}\right] \phi(w)^{n}$.
This yields $\frac{g(n)}{(2 n+1)!}=\left[t^{2 n+1}\right] \xi(t)=\frac{1}{2 n+1}\left[s^{2 n}\right]\left(\frac{s}{\theta(s)}\right)^{2 n+1}$. Now, finding an asymptotic for $\left[s^{2 n}\right]\left(\frac{s}{\theta(s)}\right)^{2 n+1}$ will allow us to compute the asymtotic for $g(n)$. We can express this as an integral whose asymptotic can be computed using the saddle point method.

The Saddle Point Method

The saddle point method is a method to compute the asymptotics of contour integrals of functions depending on a large parameter, such as Cauchy coefficient integrals

$$
\left[z^{n}\right] f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z^{n+1}} d z
$$

The Saddle Point Method

The saddle point method is a method to compute the asymptotics of contour integrals of functions depending on a large parameter, such as Cauchy coefficient integrals

$$
\left[z^{n}\right] f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z^{n+1}} d z
$$

The idea involves integrating over a contour passing through or near a saddle point ζ.

The Saddle Point Method

The saddle point method is a method to compute the asymptotics of contour integrals of functions depending on a large parameter, such as Cauchy coefficient integrals

$$
\left[z^{n}\right] f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z^{n+1}} d z
$$

The idea involves integrating over a contour passing through or near a saddle point ζ. Under certain conditions if $F(z)=e^{f(z)}$ is an analytic function depending on a large parameter, then

$$
\frac{1}{2 \pi i} \int_{C} F(z) d z \sim \frac{F(\zeta)}{\sqrt{2 \pi f^{\prime \prime}(\zeta)}}
$$

The Saddle Point Method

Michael Epstein*, Boris Hanin, Erik Lundberg
Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

- $\frac{1}{N!}=\left[z^{N}\right] e^{z}=\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z^{N+1}} d z$

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

$$
\begin{aligned}
& \frac{1}{N!}=\left[z^{N}\right] e^{z}=\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z^{N+1}} d z \\
& f(z)=z-(N+1) \log z \Rightarrow f^{\prime \prime}(z)=\frac{N+1}{z^{2}}
\end{aligned}
$$

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

- $\frac{1}{N!}=\left[z^{N}\right] e^{z}=\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z^{N+1}} d z$
- $f(z)=z-(N+1) \log z \Rightarrow f^{\prime \prime}(z)=\frac{N+1}{z^{2}}$
- Saddle point: $\zeta=N+1$

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

- $\frac{1}{N!}=\left[z^{N}\right] e^{z}=\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z^{N+1}} d z$
- $f(z)=z-(N+1) \log z \Rightarrow f^{\prime \prime}(z)=\frac{N+1}{z^{2}}$

■ Saddle point: $\zeta=N+1$

- We get: $\frac{1}{N!} \sim \frac{e^{N+1}}{(N+1)^{N+1} \sqrt{2 \pi /(N+1)}}$

Example

The asymptotic for the inverse factorials $\frac{1}{N!}$ can be computed using the saddle point method:

- $\frac{1}{N!}=\left[z^{N}\right] e^{z}=\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z^{N+1}} d z$
- $f(z)=z-(N+1) \log z \Rightarrow f^{\prime \prime}(z)=\frac{N+1}{z^{2}}$
- Saddle point: $\zeta=N+1$

■ We get: $\frac{1}{N!} \sim \frac{e^{N+1}}{(N+1)^{N+1} \sqrt{2 \pi /(N+1)}} \sim \frac{e^{N}}{N^{N} \sqrt{2 \pi N}}$

Asymptotic for $g(n)$

Almost Theorem

There are constants $\rho \approx 0.769867$ and $C \approx 1.88056$ such that

$$
g(n)=(2 n+1)!\rho^{n} \frac{C}{n^{3 / 2}}(1+o(1)) \text { as } n \rightarrow \infty
$$

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Thank You for Listening!

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg Colorado State University, Texas A\&M University, Florida Atlantic University Lemniscate Trees of Random Polynomials and Asymptotic Enumeration of Morse Functions on the 2-Sphere

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

Thank You for Listening!

Michael Epstein*, Boris Hanin, Erik Lundberg

