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I

Zusammenfassung

Laborexperimente mit Plasmen sind zwangsläufig durch Wände begrenzt, die

für das Verständnis des Verhaltens der erzeugten Plasmen eine große Rolle spie-

len. Eine übliche Methode zur Beschreibung des Plasma–Wand–Übergangs ist

das Bohm Kriterium, welches in dieser Abschlussarbeit nachvollzogen und disku-

tiert wurde. Zur Simulation von Plasmen muss ein besonderer Schwerpunkt auf

die Modellierung von Wänden gelegt werden, genauer gesagt auf den Bereich

des Plasma–Wand–Übergangs. In diesem Sinne wurden verschiedene Algorith-

men zur Forderung des Bohm Kriteriums vorgestellt. Hierbei wurde eine neue

Möglichkeit zur Interpretation von Wänden als Ursache für stationäre Schocks

dargelegt, welche aus Simulationen in einem quasineutralen Hybrid Modell mo-

tiviert war.

Das Hybrid Modell nimmt Elektronen als Fluid an, während es Ionen mit

einer Particle–in–cell Methode behandelt und somit kinetische Effekte berück-

sichtigt. Zusätzlich wurden Stöße zwischen beiden Teilchensorten sowie kon-

stante magnetische Felder einbezogen. Simulationen wurden in einem eindi-

mensionalen Modell durchgeführt, in dem das Gebiet durch zwei vollständig

absorbierende Wände begrenzt war. Es wurden stationäre Zustände betrachtet,

in denen Ionisationsquellen die Verluste an den Wänden ausglichen. Hierbei

wurde das elektrische Feld als wirbelfrei festgesetzt.

Die Ergebnisse aus der Simulation wurden mit jenen aus einem entsprechen-

den Zwei–Fluid Modell verglichen. Dabei waren Unterschiede erkennbar, beson-

ders wenn Ionisation aus einem ruhenden Neutralgas oder schwach magnetisierte

Plasmen angenommen wurden, die für einen Anstieg der Ionentemperatur bezieh-

ungsweise Anisotropie–Effekte verantwortlich waren. Daher müssen kinetische

Effekte für diese speziellen Fälle berücksichtigt werden.
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Abstract

Laboratory experiments with plasmas are inevitably limited by walls, which

play a major role in the comprehension of the plasma’s characteristics. A com-

mon way to describe the plasma–wall transition is the Bohm criterion, which

was recalled and discussed in this thesis. To simulate plasmas, special emphasis

needs to be placed on the modeling of walls, or, to be more precise, on the

plasma–wall transition. In this context, different algorithms assuring the fulfill-

ment of the Bohm criterion were presented. Here, a new interpretation of walls

as the cause for stationary shocks was introduced, motivated by simulations in

a quasi–neutral hybrid model.

The hybrid model assumes the electrons as a fluid while treating the ions

with a particle–in–cell method, thus respecting kinetic effects. Additionally,

collisions between the two species as well as constant magnetic fields were taken

into account. Simulations were carried out in a one–dimensional model, in which

the domain was limited by totally absorbing walls on each side. Stationary

states were considered, in which ionization sources balance wall losses. Here,

the electric field was enforced to be irrotational.

The simulation results were compared with those of a corresponding two–

fluid model. Differences between them were observable, especially when ion-

ization from a resting neutral gas or weakly magnetized plasmas were consid-

ered, causing an increase of ion temperature and anisotropy effects, respectively.

Hence kinetic effects need to be considered in these particular cases.
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Chapter 1

Introduction

The plasma state is the most wide–spread naturally occurring state of visible

matter in the universe. Artificially produced plasmas also find broad applica-

tion in human activities, which are most commonly produced in spatially limited

vessels so that the understanding of plasma–wall–interactions and the build–up

of sheaths due to the plasma’s shielding capability is crucial for the comprehen-

sion of the whole system. To investigate this topic in the electrostatic case, the

pioneer work of Bohm [Boh49], which is reviewed in detail by Riemann [Rie91],

is still the reference today, which will be retraced and discussed in the following

chapter.

Considering magnetic fields, various approaches concerning plasma–wall-

interactions have been elaborated. Such models are presented for example by

Behnel [Beh84], Chodura [Cho82] [Cho85] [Cho88], Holland et al. [HFM93], and

Riemann [Rie94]. Behnel provided a kinetic model, where ion transport across

a magnetic field parallel to the wall is considered by charge exchange collisions

with neutrals. He supplemented his investigations with an ion fluid model, in

which the ion flux on the wall is set constant and the densities of ions and

electrons are assumed to be in a Boltzmann equilibrium, respectively. Chodura

investigated the plasma–wall transition layer with a particle–in–cell method for

both ions and electrons without collisions in an arbitrary magnetic field. He

found that the resulting profiles are only starting smoothly if the instreaming

plasma exceeds a certain limit, leading to a generalization of the Bohm criterion

in this specific case. Riemann also considered an arbitrary magnetic field. He

treated ions as a fluid with ion–neutral collisions while assuming the electrons

to be in a Boltzmann equilibrium. Riemann stated that the previous work

of Behnel and Chodura are both special cases of his considerations: A mag-

netic field parallel to the wall resembles Behnel’s model, whereas the absence

of collisions mirrors the one of Chodura. Holland et al. assumed ions with a
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Maxwell–Boltzmann velocity distribution, considered electrons as a fluid with

electron-neutral collisions and carried out investigations on solving Poisson’s

equation at a constant magnetic field in arbitrary direction. They came to the

conclusion that the transition properties are determined by the relation of the

impact angle α of the magnetic field on the wall and the ratio of electron–neutral

collision frequency and the electron gyro frequency νe0/Ωe. If α . νe0/Ωe ap-

plies, it additionally depends on the ratio of the convective and the diffusive

electron flow. In this thesis, an alternative interpretation of the plasma–wall

transition with jump conditions will be presented, which is applicable to both

cases with and without magnetic fields.

To examine plasma–wall interactions in this thesis, basic investigations are

carried out employing a one–dimensional model, in which the domain is limited

by totally absorbing walls. It additionally accounts for electron–ion collisions

and is supplemented by an ionization model, so that a stationary state is reach-

able.

To investigate plasma–wall–interactions in this thesis, simulations will be

performed in a quasi–neutral hybrid model that treats ions with a particle–

in–cell (PIC) method and electrons as a background fluid, so that kinetic ef-

fects caused by the ions will be represented as well. The hybrid model has

been validated in the PlaCeBo (Plasma Code Bochum) framework in the fore-

going Bachelor thesis [Feh13]. To review the simulation results, a two–fluid

model based on the work of Alterkop et al. [AGB05] is pursued, who consid-

ered electron–ion collisions and a constant magnetic field parallel to both walls.

They came to the conclusion that the ions are accelerated to sound velocity in

a layer of thickness ∼ ri/β right before the walls, where ri is the ion gyro radius

at sound velocity and β the Hall parameter.

The original motivation of this thesis lies in the PSI–2 experiment and its

plasma generator, which is similar to the so–called hollow cathode discharge that

has been investigated in detail by Ferreira & Delcroix [FD78]. The experiment

will be presented in more detail in the end of this chapter.

1.1 PlaCeBo code

For further interpretation of the FlareLab–experiment, the PlaCeBo frame-

work has been developed at the local institute for theoretical physics I (TP1).

PlaCeBo currently contains implementations of a PIC method as well as ideal

magnetohydrodynamics (MHD) and hybrid models. FlareLab is designed to

generate magnetic flux tubes with the aim to gain further knowledge about the

magnetic activity on solar surfaces [FL].
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Each of the three submodules (PIC, Hybrid and MHD) was initially devel-

oped with the motivation of simulating one specific phase of the FlareLab ex-

periment. The PIC method is dedicated to the inital phase of the experiment,

in which particle densities of ions and electrons are small enough to expect ki-

netic effects. On the other hand, the MHD part describes the stage where both

particle species can be considered as a fluid. The hybrid model is used to close

the gap between both phases, namely when electrons already behave like a fluid,

but ion Larmor radii are still large enough to expect kinetic effects.

The PIC code is based on the one presented by Birdsall & Langdon in which

particle evolution is handled with the algortihm of Boris [BL85]. The MHD part

utilizes a finite–volume method with central weighted essentially nonoscillatory

(CWENO) reconstruction as elaborated by Kurganov & Levy [KL00]. For the

hybrid code, the current advance method (CAM) by Matthews [Mat94] is the

inspiration for the time evolution of quantities. Here, the ions are treated by

the above mentioned PIC method.

1.2 PSI–2 experiment

The linear plasma device PSI–2 has been established to investigate low tempera-

ture plasmas like those occurring in the divertor region of tokamak experiments.

A drawing of its setup is provided in Fig. 1.2. In the experiment a plasma is

generated by a low–pressure high–current arc discharge between a heated cath-

ode and an anode, both cylindrical in shape. In the following, this region is

referred to as the anode–cathode space. The generated plasma then propagates

to the target chamber in which it strikes the eponymous, yet optional, target,

so that material investigations can be carried out. On the way to the target,

the plasma is confined by an axial magnetic field and passes several pumping

stages. [NFM98] [PSI]

The original PSI–1 experiment was operated firstly in 1991 at the Humboldt

university of Berlin by the Max Planck institute for plasma physics in Garching.

In 1998, the target chamber has been enlarged and was provided with additional

coils, which is why it was called PSI–2 after these enhancements. The whole

experiment was transfered to the Forschungszentrum Jülich in October 2009

and is operated there until today. [Kre11]

In Tab. 1.1, 1.2 and 1.3, various plasma parameters for the PSI–1 experi-

ment are provided for different working gases and regions of the experiment.

Since the anode–cathode space has not been changed at all during the upgrade,

the parameters corresponding to this specific region are roughly the same for

PSI–2. A detailed drawing of the anode–cathode space with an accurate repre-

sentation of length, magnetic flux and its density is provided in Fig. 1.1. Since



4 Introduction

ion Larmor radii are rather large compared to the radius of the plasma (H:

ri/R ≈ 0.117, Ar: ri/R ≈ 0.3), kinetic effects induced by the ion gyro motion

are supposed, which is why the hybrid model is predestined for the investigation

of plasma–wall–interactions in this particular experiment.

A new experiment called JULE–PSI is scheduled to start working in Jülich

in late 2016. The setup will base upon the experiences made with the PSI–2

device. It will be embedded in a hot cell, so that investigations can be extended

on radioactive materials. The cathode of the plasma generator also will be

changed from cylindrically shaped to planar. [PSI]

Table 1.1: Characteristics of the PSI–1 experiment. [NFM98]

Description Value

External axial magnetic field B0 = 0.1T
Maximal discharge current Imax = 1000A
Plasma radius R = 0.03m

Table 1.2: Plasma parameters in the target exposition region of the PSI–1
experiment. [Mey98, Tab. 1.1]

Gas ne / m−3 Te / eV Ti / eV

H2 1.0 · 1017 . . . 4.0 · 1018 2 . . . 20 1 . . . 10
D2 1.0 · 1017 . . . 4.0 · 1018 2 . . . 20 1 . . . 10
He 2.0 · 1017 . . . 8.0 · 1018 2 . . . 25 2 . . . 14
Ar 1.0 · 1018 . . . 2.5 · 1019 1 . . . 5 0.4 . . . 4

Table 1.3: Typical time and length scales in the anode–cathode region of the
PSI–1 experiment. Here, τ are collision times between different species, λD is
the Debye–length, λion is the ion mean free path and ri is the ion gyro radius.
[Mey98, Tab. 1.5]

Gas τei / s τ0e / s τ0i / s λD / m λion / m ri / m

H 3.1 · 10−7 1.5 · 10−7 1.0 · 10−5 6.9 · 10−6 0.12 0.0035
Ar 4.2 · 10−9 3.1 · 10−7 1.9 · 10−4 6.8 · 10−7 0.002 0.01
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Chapter 2

Basics of plasma sheaths

Plasmas tend to preserve a neutral and field–free state even under external

influences. If an electrode or, more generally speaking, a wall is exposed to

such a plasma, the plasma screens this disturbance by enveloping it in a sheath.

The transition between plasma and wall is characterized by violation of the

quasi–neutrality and occurs on a length scale of several Debye lengths λD [LL05].

Bohm provides an attempt to explain the sheath occurrence theoretically. He

states that the ions passing this sheath border need to exceed Bohm velocity

vB, thus fulfilling the so–called Bohm criterion. [Boh49]

This criterion will be derived in this chapter while following the argumenta-

tion from the original publication, but for the better understanding, some vari-

ables were changed. Further interpretation of the criterion involves the require-

ment of a so–called presheath, whose possible processes will be outlined. After-

wards, different methods for implementation of the criterion in PIC–simulations

are introduced. Finally, a different and new interpretation of sheath edges with

jump conditions will be given, on which the simulations in this thesis will rely.

2.1 Bohm criterion

2.1.1 Derivation and discussion

To investigate the topic of the plasma–sheath transition, a one–dimensional

model is considered. The plasma is assumed to be in contact with a wall at

x = xw, in front of which a sheath begins at x = xs < xw. This position is

later referred to as the sheath edge. An overview over the geometry along with

sketches of particle densities and the potential is given in Fig. 2.1. [Boh49]
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The plasma is assumed to be quasi–neutral

Zeni − ene = 0 ⇒ ne = Zni (2.1)

where e is the elementary charge, Z is the charge number of the ions and n refers

to the particle number density of each species, respectively. The sheath edge

x=xs is defined as the spatial border up to which quasi–neutrality is fulfilled,

thus nes=Znis is valid at this specific position behind which this characteristic

is violated. [Boh49]

The following assumptions are provided in context of laboratory experi-

ments. Here, a plasma is created by ionization which yields secondary electrons

with much higher kinetic energy than ions receive in this process. Due to high

mobility, electrons will accumulate at walls and charge them negatively, result-

ing in an electric field that accelerates the ions to the wall. As a result of

frequent collisions according to their high mobility, electrons are assumed to

acquire a Maxwell–Boltzmann equilibrium

ne(x) = nes exp

(
e(Φ(x)− Φs)

kBTe

)
(2.2)

with Te the electron temperature and Φs the potential at the sheath edge. For

the treatment of ions, the conservation of energy of this particular species is

considered, which connects the average velocity of an ion vi with the potential Φ

1

2
mivi(x)

2 + ZeΦ(x) =
1

2
miv

2
is + ZeΦs

⇒ vi(x) = vis

√
1− 2Ze

miv2is
(Φ(x)− Φs) (2.3)

where mi is the ion mass and vis is the velocity of the ions at the sheath edge.

Additionally considering the mass transport equation yields an expression for

the ion density ni in dependence of the potential Φ

nivi = nisvis ⇒ ni(x) = nis
vis

vi(x)
= nis

(
1− 2Ze

miv2is
(Φ(x)− Φs)

)− 1
2

where nis is the ion density at the sheath edge. [Boh49]

Inserting the above introduced expressions for each particle density sepa-

rately into Poisson’s equation for electrostatics yields the so–called plasma–

sheath equation

∂2Φ

∂x2
=

e

ε0
(ne − Zni) =

Zenis

ε0

{
exp

(
e∆Φ

kBTe

)
−
(
1− Ze∆Φ

Tis

)− 1
2

}
(2.4)
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where the newly occurring abbreviations are introduced for convenience.

∆Φ(x) = Φ(x)− Φs Tis =
1

2
miv

2
is

This differential equation gets integrable after multiplying it by ∂Φ/∂x, so that

applying integration from the sheath edge x=xs up to an arbitrary position in

the sheath xs<x<xw yields the following expression. [Boh49]

x∫
xs

∂2Φ

∂x′2
∂Φ

∂x′ dx
′ =

1

2

[(
∂Φ

∂x

)2

−
(
∂Φ

∂x

)2
∣∣∣∣∣
x=xs

]

=
Zenis

ε0

{
kBTe

e

[
exp

(
e∆Φ

kBTe

)
− 1

]
+

2Tis

Ze

[√
1− Ze∆Φ

Tis
− 1

]}

In order to derive a condition that characterizes the ion motion at the sheath

edge, the investigation of the behavior of each side of the equation is crucial. To

be more precise, their respective signs need to be identified. For large potential

drops in the sheath region due to electrons charging the wall, the right–hand

side is obviously positive. To examine its behavior for small deviations around

∆Φ ≈ 0, expansion up to the second order is considered

exp(x) ≈ 1 + x+
x2

2
+O(x3)

√
1− x ≈ 1− x

2
− x2

8
+O(x3)

in which the terms of zeroth and first order vanish.

1

2

[(
∂Φ

∂x

)2

−
(
∂Φ

∂x

)2
∣∣∣∣∣
x=xs

]
≈ Ze2nis

2ε0

(
1

kBTe
− Z

2Tis

)
(∆Φ)2 +O

(
(∆Φ)3

)
(2.5)

On the basis of general observations in experiments, the left–hand side is con-

sidered to be positive. Bohm claims that, near sheath edges, the electric field is

vanishingly small and proposes a simple boundary condition.(
∂Φ

∂x

)∣∣∣∣
x=xs

= 0

Apparently with this boundary condition, solutions are only possible if the right–

hand side of the equation is positive as well. For large potential drops this is

fulfilled as remarked shortly before expansion has been applied. For small devi-
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ation of the potential ∆Φ however, the equation is only fulfilled it the following

condition holds:

1

kBTe
≥ Z

2Tis
⇔ Tis ≥

ZkBTe

2
⇔ vis ≥

√
ZkBTe

mi
=: vB

This is known as the Bohm criterion with Bohm velocity vB. [Boh49]

To investigate the effect of this criterion on the plasma at the sheath border,

an expansion of the original plasma–sheath equation (2.4) up to the first order

is considered

exp(x) ≈ 1 + x+O(x2)

√
1

1− x
≈ 1 +

x

2
+O(x2)

in which the terms of zeroth order vanish.

∂2Φ

∂x2
≈ Ze2nis

ε0

(
1

kBTe
− Z

2Tis

)
∆Φ+O

(
(∆Φ)2

)
If the Bohm criterion is applied, the term inside the brackets is positive, thus

leading to an exponential behavior of the potential and a stable sheath if the

expanded equation is considered to be solved. If it is in the contrary violated,

the potential becomes oscillatory, since the term gets negative. A further look

on Poisson’s equation provides a physical interpretation of this particular case.

When its right–hand side gets negative, the ion density is dropping more than

the electron density so that an excess of negative charge is occurring in the

sheath. This excess of negative charge reverses the initially accelerating forces

of the ions on the wall, thus resulting in an oscillatory potential. [Boh49]

In recent history of plasma–sheath theory, several approaches have been

made to derive the Bohm criterion from a different perspective. The review

article of Riemann [Rie91] provides a good summary on such contributions from

which a short survey is outlined here. Permitting a pressure contribution of the

ions on the plasma, the Bohm velocity can be generalized to the ion sound

velocity

vB → cs =

√
γkBTi + ZkBTe

mi

with Ti the ion temperature and γ the adiabatic coefficient of a fluid element

in this consideration. Respecting the full distribution of ions provides another

way of generalization and yields the so–called kinetic Bohm criterion.〈
1

v2

〉
=

mi

ZkBTe
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Its derivation, however, has major flaws and is discussed in Riemann’s review

article in detail. [Rie91].

Although the Bohm criterion has become a common way to treat the ion

motion at the sheath edge, there are still inconsistencies in its derivation. For

example, the only difference Bohm takes into account between both particle

species is that the electrons are treated Maxwell–Boltzmann distributed while

for the ions only energy conservation is considered. This is not necessarily

valid for every laboratory plasma. Especially when magnetized plasmas are

taken into account, the Maxwell–Boltzmann assumption needs to be discarded.

Additionally the boundary condition applied on the potential at the sheath edge

is just based on experimental observation and needs further specification for a

more accurate formulation, since this condition clearly has an impact on the

Bohm velocity as seen in equation (2.5). Interestingly, no specification about

the wall occurs in the derivation of the criterion at all, neither its position nor

its potential. Nevertheless it leads to a universal result. Bohm claims that this

criterion is not exact though, being applicable ”[...] within 20 or 30 per cent

[...] in practically all cases[]” [Boh49], for which the previous remarks are most

likely the reason.

w
al
l...

xxw

ne(x)

Φ(x)Φplasma

Zni=ne=ne0

x0

bulk· · ·

Zni=ne

xs

presheath

L

nes

Φs

Φw

Zni

ne

sheath

∼ λD

Figure 2.1: Qualitative behavior of potential and particle densities in contact
with a wall. [LL05, based on Fig. 6.1]
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2.1.2 Necessity of a presheath

The Bohm criterion states that ions passing the sheath edge have to exceed the

Bohm velocity vB. Thus ions need to be accelerated to this velocity, if they are

too slow, which happens in the so–called presheath on a specific length L.

For the following explanations, the logarithmic derivative of the quasi–neutrality

(2.1) in the region right before the presheath is considered.

1

ni

dni

dx
=

1

ni

dne

dx

Expressing the ion density in terms of ji = Zenivi and assuming Maxwell–

Boltzmann distributed electrons (2.2) in this specific region, the equation be-

comes

e

kBTe

dΦ

dx
=

1

ji

dji
dx

− 1

vi

dvi
dx

.

For ions slower than Bohm velocity vi < vB meaning that the Bohm criterion is

not yet fulfilled, the above expression can be rewritten in an inequality.

e

kBTe

dΦ

dx
+

1

vB

dvi
dx

<
1

ji

dji
dx

Remembering the dependency of the ion velocity on the potential from equation

(2.3), one or both of the following conditions need to be fulfilled.

(i)
dji
dx

> 0 (ii)
1

vB

dvi
dx

< − e

kBTe

dΦ

dx

The right–hand side of the second condition is positive, since the potential is

assumed to decrease monotonically. [Rie91]

These conditions are valid for different processes from which each one char-

acterizes a specific type of presheath. The geometric presheath requires current

concentration due to the wall’s geometry, for example for spherical probes, and

is thus applying to condition (i). The length scale L for this case is the cur-

vature radius of the wall. When collisions are taken into account along with

ion friction fulfilling condition (ii), the collisional presheath is built–up. Here,

the presheath has a length L of the order of the ion mean free path. With

ionization appearing together with mean ion retardation, thus conforming to

both conditions (i) and (ii), the ionizing presheath occurs. Its length L is of the

order of the ionization length. A special case of the presented processes is the

magnetic presheath that does not require either of the above conditions. Here,

the velocity of the ions perpendicular to the wall is converted by magnetic fields

into the parallel direction, thus the presheath extends in several ion Larmor

radii. [Rie91]
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Since lengths of both sheath and presheath generally differ in many orders of

magnitude, the analysis of the plasma–wall transition region leads to a two–scale

problem in which the decision whether the sheath or the presheath shall be

investigated is fundamental for the intended examination [Rie91]. Since the title

of this thesis suggests the application of quasi–neutral models in the following,

only the presheath is able to get resolved anyway. Thus a specific way to imply

the Bohm criterion as a boundary condition right at each wall needs to be found.

2.2 Bohm forcing algorithms

Since the Bohm criterion has become a popular way to describe the plasma–wall

transition, several PIC codes implement this condition in different manners. The

algorithms presented in the following have been developed for the simulation of

Hall–thrusters.

Lampe et al. propose a method for their simulation program applying the

Bohm criterion as a boundary condition, which they refer to as the Bohm logical

sheath procedure. In their algorithm, a sufficiently wide layer in front of the

expected sheath edge is called out in which all ions are set to Bohm velocity.

This type of imposition dynamically influences the quasi–neutral region of the

plasma, resulting in an imitation of the presheath. [LJMS98]

Ahedo et al. resign from increasing the particles’ velocities and increase their

kinetic energy instead, which they refer to as simple Bohm forcing. They also

propose an implementation for the kinetic Bohm criterion, resulting in their

kinetic Bohm forcing algorithm in which the ion velocity distribution in the

specified area is taken into account to calculate the increment for the kinetic

energy that is applied on the ions. [ASP10]
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Chapter 3

Modeling

plasma–wall–interactions in

one dimension

3.1 Formulation of the investigated problem

Since this thesis is motivated by plasma–wall interactions, an elaborated model

is required to investigate this topic. Particular interest lies in the plasma source

of the PSI–2 experiment so that its characteristics, as introduced in section 1.2,

must be adopted properly in the formulation of the model. On the other hand,

this model shall be kept as simple as possible to achieve elementary results.

In this spirit the geometry and the basic processes of the PSI–2 plasma source

shall be reduced to a fundamental model which will be the basis for further

investigations.

x

x0 = 0

y

z

B α

x1−x1

ionization domain

w
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l

x2

w
al
l

−x2

Figure 3.1: Sketch of the domain of the introduced model.
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Any laboratory plasma experiment is bounded by surrounding walls. In the

PSI–2 plasma source a hollow cathode discharge is used, which provides cathode

and anode as additional walls directly exposed to the plasma (see Fig. 1.1). To

investigate the effects caused by walls on a plasma, a one–dimensional model

(∂y = 0, ∂z = 0) is supplied. As shown in Fig. 3.1, two planar walls confine the

domain in which plasma is ionized in an area between −x1 and x1 symmetric to

x0 = 0. For simplicity in this consideration, totally absorbing walls are assumed.

A magnetic field is imposed externally. The cartesian coordinate system

of the model is chosen so that B = Bxex + Byey where Bx is the component

perpendicular to the wall and By the one parallel to it. The external magnetic

field is assumed to be sufficiently large so that it exceeds the magnetic field

induced by the electric current which is thus neglected. This assumption is valid

for the PSI–2 experiment as shown in the following estimation of the absolute

values of the induced field B1 and the external one B0 by considering Ampère’s

law and the PSI–2 parameters from Tab. 1.1. Hereby an axially symmetric,

circular path C around the plasma of radius R is chosen through which the

applied current on the electrodes I flows. For a rough estimation both path and

magnetic field B1 are assumed to have an identical shape. The displacement

current vanishes in a stationary state.∮
C

B1 · ds = 2πRB1 = µ0Imax ⇔ B1

B0
=

µ0Imax

2πRB0
=

1

15

The plasma is expected to reach a time–independent (∂t = 0) stationary

state at which sheaths are built up, so that the plasma quantities form spa-

tial profiles. Thus the electric field needs to be irrotational due to Faraday’s

induction law, which yields to the following conditions in the one–dimensional

model.

∇×E = −∂tB = 0 ⇒ ∂xEy = 0 and ∂xEz = 0 (3.1)

This would also motivate defining a potential φ with E = −∇φ which is

nonessential in the following considerations.

In this model, only ion–electron collisions are taken into account. Although

other collision types are also relevant for the PSI–2 experiment (see Tab. 1.3)

this is the only one considered to keep the investigation as basic as possible.

Others can be added easily by following the calculations straightforwardly in

this thesis. In this context ion density ni and ion–electron collision frequency

νie are correlated

νie
ni

:= ν̂ie = const. (3.2)
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so that the collision frequency is proportional to the ion density with the con-

stant ν̂ie. [AGB05]

Referring to temperatures, electrons are treated isothermally. One possible

justification for this assumption is, that the electrons are heated by the elec-

trodes and distribute their energy fast in the whole domain because of high

thermal conductivity. On the other hand they are radiating thermally until an

equilibrium with a constant temperature is reached.

No specification for the ions about their temperature is necessary in hybrid

simulations, since they are treated as particles here. Later on, a two–fluid

formulation as comparison with the hybrid results is provided, though for which

the ion temperature needs to be specified. For simplicity, the ions are assumed

to stay cold, which may be justified by their high inertia.

3.2 Modeling totally absorbing walls and ioniza-

tion

One condition for a stationary state is, that particle losses by wall absorption

balance their ionization sources. In the hybrid simulations, which will be in-

troduced later, this is implemented in the PIC–treatment of the ion species by

removing those particles impeding the wall and resupplying them in the ioniza-

tion domain. Thus losses are directly related to sources rather than prescribing

ionization rate constants which makes the implementation of the PIC–model

easier, because the number of particles throughout the simulation is preserved.

Position and momentum of the recently ionized particles are handled with

probability density functions (pdf) that are symmetric to x0 = 0 and vanish out-

side the ionization domain of width 2x1. Here, two different pdfs are introduced,

which satisfy these conditions, namely a constant distribution

fcd(x) =

 1
2x1

for |x| ≤ x1

0 for |x| > x1

(3.3)

and a raised cosine distribution [Rin10]

frcd(x) =


1

2x1

[
1 + cos

(
π x

x1

)]
for |x| ≤ x1

0 for |x| > x1

(3.4)

where x1 is half the width of both pdfs. The benefit of the cosine distribution

over the constant one is, that it is smooth and falls down to zero at the bor-

ders of the ionization domain, however it makes a later analysis more complex.
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Figure 3.2: Constant distribution.
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Figure 3.3: Raised cosine distribution.

The corresponding cumulative distribution functions (cdf) are provided in the

following.

Fcd(x) =

x∫
−∞

fcd(x
′) dx′ =


0 for x < −x1

1
2

[
1 + x

x1

]
for |x| ≤ x1

1 for x > x1

(3.5)

Frcd(x) =

x∫
−∞

frcd(x
′) dx′ =


0 for x < −x1

1
2

[
1 + x

x1
+ 1

π sin
(
π x

x1

)]
for |x| ≤ x1

1 for x > x1

(3.6)

For the later two–fluid analysis it is necessary to introduce and specify source

densities for both mass sn and momentum sp for the ion species. The ionization

as presented above yields an analytical term for sn

sn(x) = A f(x) (3.7)

with A a constant factor and f a probability density function. Two differ-

ent models for treating the momentum of newly ionized particles are realized.

Firstly ions are inserted with zero velocity which is interpreted as they are ion-

ized from a resting gas background, so that no additional momentum is provided.
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This sets the momentum source density to zero.

sp(x) = 0 (3.8)

Secondly, assuming they are ionized from a comoving background gas, ions adopt

the fluid velocity at the point of reinsertion so that sp becomes

sp(x) = sn(x)ui(x) (3.9)

where ui is the average ion velocity.

The constant A from equation (3.7) is determined by particle number con-

servation. Considering the ion mass transport equation

∂x(niuix) = sn = A f(x)

the constant A can be obtained by integration and is thus correlated with both

mass fluxes (niuix)1 and (niuix)0 at the boundaries of the integration domain

x1 and x0 = 0.

x1∫
0

∂x(niuix) dx = A

x1∫
0

f(x) dx

⇔ (niuix)1 − (niuix)0 = A [ F (x1)︸ ︷︷ ︸
=1

−F (0)︸︷︷︸
= 1

2

] =
A

2

⇔ A = 2 [ (niuix)1 − (niuix)0 ] (3.10)

Here, F (x) describes the cumulative distribution function to the respective prob-

ability density function f(x). Since the domain is symmetric, the integration

domain is chosen to be from x0 = 0 to x1, so that later equations will be more

easy to be read.

In this context the integrated form of the mass source density Sn is intro-

duced for later purposes.

Sn(x) :=

x∫
0

sn(x
′) dx′ = A

(
F (x)− 1

2

)

= 2 [ (niuix)1 − (niuix)0 ]

(
F (x)− 1

2

)
(3.11)

To achieve mass conservation everything moving out of the ionization domain

must be replenished inside. This statement can also be expressed with an equa-

tion for Sn.

Sn(x > x1) = (niuix)1 − (niuix)0 (3.12)
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Chapter 4

Physical plasma models

Since the model for plasma–wall–interactions is now explained, models to de-

scribe the plasma itself need to be introduced, namely a two–fluid and a hybrid

model. The hybrid model is the basis for simulations in this thesis, whilst the

two–fluid model is provided as a reference for comparison of the results.

4.1 Two–fluid model

In this section a three–dimensional formulation of the two–fluid model will be

presented, which will be reduced later to one dimension.

This model is motivated by the work of Alterkop et al. The basis of their

examination are stationary (∂t = 0) equations for mass transport and momen-

tum balance for electrons and ions separately, while collisions between them

are taken into account. For the electrons in equation (4.2) it is assumed, that

their thermal velocity exceeds their directed velocity, so that the inertia term is

neglected. [AGB05]

These equations are extended by the ionization model as described in chapter

3. For this purpose additional source densities for mass sn and momentum sp

are provided. The latter is relevant only for the ions since electron inertia is

negligibly small.

∇ · (niui) = sn (4.1)

0 = −ene (E+ ue ×B)−∇pe −meneνei (ue − ui) (4.2)

mi∇ · (niuiui) = Zeni (E+ ui ×B)−∇pi −miniνie (ui − ue) +misp (4.3)

Since charge is conserved in the ionization process, the electron mass transport

equation can be derived from the equivalent one for the ions (4.1) and the
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continuity equation.

∇ · j = ∇ · (Zeniui − eneue) = 0 ⇔ ∇ · (neue) = Zsn

As described in section 3, ions and electrons are treated isothermally, so that

their respective pressure gradients can be written as

∇pi = kBTi∇ni, ∇pe = kBTe∇ne = ZkBTe∇ni.

Due to momentum conservation the contribution of collisions between particles

to the momentum balance must vanish in total. This yields the following rela-

tionship between both collision terms and the collision frequencies while taking

into account quasi–neutrality (2.1).

meneνei = miniνie ⇔ Zmeνei = miνie (4.4)

The electric field is derived from the electron momentum balance (4.2).

E = −ue ×B− ∇pe
ene

− meνei
e

(ue − ui)

Assuming quasi–neutrality (2.1) and substituting the collision frequency (4.4),

all electron quantities except for the fluid velocities are replaced by ion equiva-

lents which will be useful for later purposes.

E = −ue ×B− kBTe

e

∇ni

ni
− miνie

Ze
(ue − ui) (4.5)

Again considering quasi–neutrality (2.1) both momentum balance equations

can be summed up to the total momentum balance equation.

mi∇ · (niuiui) = Zeni (ui − ue)×B−∇(pe + pi) +misp (4.6)

Using the product rule on the left hand side of the total momentum equation

and recognizing the mass transport equation (4.1)

∇ · (niuiui) = ui(∇ · (niui)) + (niui · ∇)ui = snui + ni(ui · ∇)ui

the total momentum balance equation finally becomes

ni(ui · ∇)ui = ni (ui − ue)×Ωi − c2s (∇ni)− snui + sp (4.7)
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with Ωi the ion gyro frequency and cs the ion sound velocity.

Ωi =
Ze

mi
B cs =

√
ZkBTe + kBTi

mi

4.1.1 One–dimensional formulation

The one–dimensional formulation (∂y = 0, ∂z = 0) of the foregoing equations

with a magnetic field B = Bxex + Byey is needed for the comparison with the

hybrid simulations (see section 3). Since the domain is symmetric, it is sufficient

to consider only one side of the domain for the analytical treatment. In this

context the mass transport equation

∂x(niuix) = sn

leads to the spatial derivative of the ion density

∂xni =
sn − ni∂xuix

uix
(4.8)

and its integrated form yields

niuix = (niuix)0 + Sn (4.9)

with the integrated mass source density Sn from equation (3.11). The total

momentum balance equation has the following form in the one–dimensional

formulation.

niuix∂xuix = −ni (uiz − uez)Ωiy − c2s∂xni − snuix + spx

niuix∂xuiy = ni (uiz − uez)Ωix − snuiy + spy

niuix∂xuiz = ni [(uix − uex)Ωiy − (uiy − uey)Ωix]− snuiz + spz

By eliminating the ion density by means of equations (4.8) and (4.9) the com-

plete system of differential equations is expressed wholly by the fluid velocities

and the source terms.(
uix −

c2s
uix

)
∂xuix = − (uiz − uez)Ωiy

+
uix

(niuix)0 + Sn

(
spx − sn

(
uix +

c2s
uix

))
(4.10)
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uix∂xuiy = (uiz − uez)Ωix

+
uix

(niuix)0 + Sn
(spy − snuiy) (4.11)

uix∂xuiz = [(uix − uex)Ωiy − (uiy − uey)Ωix]

+
uix

(niuix)0 + Sn
(spz − snuiz) (4.12)

Since the source terms are defined in chapter 3, the only quantities left to be

specified for the solution of the above equations are the electron fluid velocities.

These are obtained from the restriction on an irrotational electric field which is

shown in the following section.

4.1.2 Enforcing irrotational electric fields

In the time–independent model the electric field needs to be irrotational as

mentioned in chapter 3. This requires the electric field components Ey and

Ez to be spatially constant in the one–dimensional formulation. Applying this

condition (3.1) on the electric field (4.5) yields

Ey = −Bxuez − miνie
Ze

(uey − uiy) = const.

Ez = −Byuex +Bxuey −
miνie
Ze

(uez − uiz) = const.

Rearranging the above conditions yields

uey − uiy =
1

νie

(
−Ωixuez − Ẽy

)
uez − uiz =

1

νie

(
−Ωiyuex +Ωixuey − Ẽz

)
where the constant electric field components are treated as boundary conditions

and are rewritten for better readability.

Ẽy =
Ze

mi
Ey Ẽz =

Ze

mi
Ez

Solving these equations for uez and uey respectively yields

uey − uiy =
Ωix

[
Ωiyuex − Ωixuiy − νieuiz − Ẽz

]
− νieẼy

Ω2
ix + ν2ie

⇔ uey =
Ωix

[
Ωiyuex − νieuiz − Ẽz

]
+ ν2ieuiy − νieẼy

Ω2
ix + ν2ie

,
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uez − uiz =
νie

[
−Ωiyuex +Ωixuiy − Ẽz

]
− Ω2

ixuiz − ΩixẼy

Ω2
ix + ν2ie

⇔ uez =
νie

[
−Ωiyuex +Ωixuiy − Ẽz

]
+ ν2ieuiz − ΩixẼy

Ω2
ix + ν2ie

.

The remaining x–component of the electron fluid velocity is determined by

the corresponding continuity equation and is thus related to a wall current

density jw perpendicular to the wall surfaces which is determined by the current

I flowing between the electrodes.

ni(uix − uex) =
jw
Ze

:= j̃w ⇔ uex = uix −
j̃w
ni

(4.13)

Hence the final expressions for the other two velocity components become

uey =
Ωix

[
Ωiy

(
uix − j̃w

ni

)
− νieuiz − Ẽz

]
+ ν2ieuiy − νieẼy

Ω2
ix + ν2ie

(4.14)

uez =
νie

[
−Ωiy

(
uix − j̃w

ni

)
+Ωixuiy − Ẽz

]
+ ν2ieuiz − ΩixẼy

Ω2
ix + ν2ie

. (4.15)

With the above equations the electric field (4.5) in the one–dimensional

model can be calculated directly from the ion fluid velocities for an arbitrary

magnetic field while taking into account ion–electron collisions.

4.2 Hybrid model

In this section the hybrid model is described, which is used for the simulations in

this thesis. This model was already presented in detail in the foregoing Bachelor

thesis [Feh13] and will be adapted to the one–dimensional model from chapter 3.

The hybrid model treats ions kinetically in a PIC–model whilst considering

the electrons as a background fluid. Here, the electrons determine the electric

field E by their momentum balance which was already derived in equation (4.5).

Since the only interest lies in stationary states here, an irrotational electric field

is enforced as described in the previous section. Although the PIC–model treats

the particles’ motion time–dependently, their trajectory does not change in a

stationary state. Thus after initialization, the simulation yields an iterative

process to reach one specific state.

Since ions are combined in individual superparticles, their motion is deter-
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mined by the Lorentz force

d

dt
viα =

Ze

mi
[Emod(xiα) + viα ×B(xiα)] (4.16)

with

Emod(xiα) = E(xiα)−
mi

Ze
νie(xiα) [viα − ue(xiα)] , (4.17)

where α is the particle index. Here a modified electric field Emod is introduced

that additionally applies averaged electron–ion–collisions on the ions. Inserting

the electric field (4.5) reveals that this particular choice yields a relaxation of

the individual ion velocities to their average velocity and thus provides a cooling

effect on the ions corresponding to the model from chapter 3.

Emod(xiα) = −ue(xiα)×B− kBTe

e

∇ni(xiα)

ni(xiα)
− mi

Ze
νie(xiα) [viα(xiα)− ui(xiα)]

With this additional collision term the ion momentum equation would become

mini∂tui = Zeni (Emod + ui ×B)−∇pi

= Zeni (E+ ui ×B)−∇pi −miniνie (ui − ue)

which equals the ion momentum balance equation (4.3, without momentum

source density) and validates the modification.

4.3 Normalization

If a normalization is considered it needs to be applied on both models to make

a comparison possible. For the normalization of a physical quantity f , it is

separated in a numerical value f̄ and a constant scale f̊ so that f(x) = f̄(x)f̊ .

Here the velocity is normalized to the ion sound velocity cs for cold ions

(Ti = 0) and the temperature is normalized to the constant electron tempera-

ture. Since the ion motion is determined by the magnetic field, length and time

are normalized to the ion Larmor radius and the inverse ion gyro frequency,

respectively,

T̊ = Te, v̊ = cs(Ti = 0) =

√
ZkBTe

mi
, t̊ = Ω̊−1

i =
mi

ZeB̊
, l̊ = r̊i =

mi̊v

ZeB̊

with B̊ the normalization value of the magnetic field. The ion density is nor-

malized to an arbitrary constant n0.

For the case without a magnetic field, the length scale is arbitrary whereas

the normalization of time is determined by t̊ = l̊/̊v.
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Chapter 5

Numerical implementation

of the one–dimensional

hybrid model

The hybrid model is used for simulations in this thesis. Since its theory has

been introduced in the previous section 4.2, its numerical implementation will

be described in this chapter.

5.1 Particle–in–cell method

In simulations including kinetic effects, each particles’ motion needs to be im-

aged properly, which occupies an incredible amount of computational resources.

A common method to simplify these kind of simulations is the particle–in–cell

method (PIC) which will be used for the hybrid simulations. Its basic idea

is to divide the domain into a grid of uniformly shaped cells, with which the

particles are interacting instead of considering each interaction between them.

To do so plasma quantities are transfered to the grid and interpolated on each

particle’s position if required. To further save computational resources, particles

are merged to superparticles describing particle clouds. [BL85]

For three–dimensional simulations the Yee grid is a common choice because

it conserves∇·B in time–dependent simulations. One exemplary cell is shown in

Fig. 5.1. Here particle densities are collected on the corners while the particles’

velocities as well as the electric fields are lying on the edges. The magnetic fields

are saved centered on each side of a cell. [Yee66]

The Yee grid is used in the placebo framework. Though in this thesis one–

dimensional simulation are performed, the simulation domain is based on this
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E,u
B

Figure 5.1: Scheme of a cell in the Yee grid. [Yee66]

type of grid to make it easier to transfer the findings of this thesis on a three–

dimensional code.

The spatially limited simulation domain is additionally enclosed by so called

ghost cells that act as a dump for the collected plasma quantities. The number

of ghost cells is determined by the interaction length of the particles which is

described by shape functions.

5.1.1 Shape functions

To collect the particle quantities on the discrete grid, so called weighting cal-

culations are required, which are later used in reverse to compute the forces on

each particle [BL85]. This weighting process draws upon so called shape func-

tions. Recent algorithms are commonly based on b–splines which are presented

in the following. [Lap]

The simplest type of weighting just sums up the particle’s characteristics on

the grid positions, which is also called nearest–grid–point weighting [BL85]. For

this method, the first b–spline b0 is the corresponding shape function

b0(ξ) =

1 |ξ| < 0.5

0 other

where ξ =
x−Xj

∆x is the spatial coordinate, relative to the left side of grid cell j

which has a length of ∆x and is located at position Xj. Higher order weighting

can be achieved by convolution

bl(ξ) = (bl−1 ∗ b0)(ξ) =
∞∫

−∞

bl−1(ξ
′)b0(ξ − ξ′) dξ′

which may be interpreted physically as a particle cloud of shape bl−1 passing
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a rectangularly shaped grid cell described by the b0–spline. Thus the next two

higher order b–splines are

b1(ξ) = (b0 ∗ b0)(ξ) =

1− |ξ| |ξ| < 1

0 other

b2(ξ) = (b1 ∗ b0)(ξ) =


−ξ2 + 0.75 |ξ| < 0.5

0.5(|ξ| − 1.5)2 0.5 < |ξ| < 1.5

0 other

which are plotted together with the b0–spline in Fig. 5.2. In terms of this un-

derstanding the b1–spline describes the effect of a uniformly distributed particle

cloud on a grid cell, whereas the b2–spline considers a triangularly shaped cloud

of particles. The use of higher order splines thus smooths the shape of the par-

ticle clouds and reduces noise on the collected quantities, however it requires

more computation [BL85]. [Lap]

5.1.2 Exchange with grid

With the splines as defined above, the exchange between particles and grid

can be performed. To collect the global quantities on the corresponding grid

positions marked with j, namely ion particle and flux density as well as ion

temperature, summation over the particles is required. Here, ions are marked

with the index i from which α is the particle index.

(ni)j =
1

∆x

∑
α

bl

(
xiα −Xj

∆x

)
(niui)j =

1

∆x

∑
α

viα bl

(
xiα −Xj

∆x

)
(niTi)j =

1

∆x

∑
α

(viα − uij)
2 bl

(
xiα −Xj

∆x

)

In reverse the quantities relevant for particle acceleration, like the electric field,

are interpolated from the grid by summation.

Eα =
∑
j

Ej bl

(
Xj − xiα

∆x

)

Here, the same splines are used for collection and interpolation to preserve the

shape of the particle clouds, which prevents gravitation–like instabilities and

self–forces on the particles. [BL85]
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(a) b0–spline.
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(b) b1–spline.
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(c) b2–spline.

Figure 5.2: Illustration of different order b–splines. The red highlighted area
denotes the domain of the cell j. The red dashed lines mark the positions on
which the collected quantities are saved and for which the particles inside cell j
could have influence on, with the respective shape function. [BL85, Fig. 8.5a]
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Figure 5.3: Leapfrog scheme with initial half–push of the particle positions,
marked by the blue arrows.

5.2 Time evolution of particle quantities

For the numerical treatment of particle propagation, their equation of motion

is rewritten into a set of differential equations of first order on which a Leapfrog

scheme is applied that staggers the evolution of particle positions and velocities.

Its discretized form in the one–dimensional formulation is

vn+1
iα − vn

iα

∆t
=

Ze

mi

[
En+ 1

2 +
vn+1
iα + vn

iα

2
×B

]
(5.1)

x
n+ 3

2

iα − x
n+ 1

2

iα

∆t
= vn+1

iαx

where the upper index denotes the time step. To initialize the leapfrog scheme,

a primary half–step is required. [BL85]

x
1
2 = x0 +

∆t

2
v0x

Instead of solving the vector equation, a more simple algorithm will be used

to update the particle velocities. For this case, the algorithm elaborated by Boris

[Bor70] is the common choice. As sketched in Fig. 5.4, the particle propagation

is separated in parts of E–field acceleration

vn
iα = v−

iα − ∆t

2

Ze

mi
E vn+1

iα = v+
iα +

∆t

2

Ze

mi
E

and B–field rotation, so that equation (5.1) becomes

v+
iα − v−

iα

∆t
=

Ze

2mi

(
v+
iα + v−

iα

)
×B.



30 Numerical implementation of the one–dimensional hybrid model

vn
iα

E–acceleration−−−−−−−−−−→ v−
iα

B–rotation−−−−−−−→ v+
iα︸ ︷︷ ︸

v
n+1
iα

+vn
iα

2 =
v
+
iα

+v
−
iα

2

E–acceleration−−−−−−−−−−→ vn+1
iα

Figure 5.4: Illustration of the separated propagation in the Boris–scheme.

For small rotation angles θ, the following relation can be obtained by geometric

interpretation of Fig. 5.5a.

tan

(
θ

2

)
=

∣∣∣v+
iα,⊥ − v−

iα,⊥

∣∣∣∣∣∣v+
iα,⊥ + v−

iα,⊥

∣∣∣ = ZeB

mi

∆t

2

With this relation two auxiliary vectors t and v′
iα are constructed from which

the latter is perpendicular to v+
iα − v−

iα

t = tan

(
θ

2

)
B̂ =

ZeB

mi

∆t

2
v′
iα = v−

iα + v−
iα × t

where B̂ is the unit vector in direction of B. Thereby v′
iα × B is parallel to

v+
iα − v−

iα so that the final velocity v+
iα after gyration is calculated by

v+
iα = v−

iα + v′
iα × s

where s is a resized version of t that ensures conservation of the absolute values

of velocities
∣∣v+

iα

∣∣ = ∣∣v−
iα

∣∣ thus granting stability. [BL85]

s = sin(θ) B̂ =
2t

1 + t2

v+
iα

v−
iα

v+
iα + v−

iα

v+
iα − v−

iα

θ

B

(a) Rotation from v−
iα to v+

iα.

v+
iα

v−
iα

v−
iα × t

v′
iα

v′
iα × s

θ

(b) Construction of rotation.

Figure 5.5: Graphical support to understand the Boris algorithm showing the
rotation from v−

iα to v+
iα projected on a plane perpendicular to B. [BL85,

Fig. 4.3a & Fig. 4.4a]



5.3 Ionization and plasma–wall–interactions 31

5.3 Ionization and plasma–wall–interactions

As already stated in chapter 3, the hybrid simulation connects particle losses

at the walls directly with the ionization sources. Superparticles are flagged as

impeding a wall as soon as they reach a ghost cell. In the subsequent time

step they will be removed and reinserted in the ionization domain according

to one selected probability distribution function from section 3.2. Depending

on whether ionization from a resting or comoving neutral gas background is

specified, the flagged particles are reset with zero or average velocity as collected

from grid in the previous time step.

Since only a rather small number of superparticles compared to natural

occurring plasmas is considered in simulation, ionization reveals a source of

noise in the collected quantities since not a single particle but rather a whole

cloud of particles will be added to the domain. It was considered to counteract

this effect by smoothing the ion density in each time step, but it was waived

since it changes the final results dramatically, insofar as some of the observed

kinetic effects were suppressed.

5.4 Application of Bohm forcing

The algorithms forcing the Bohm criterion as described in section 2.2 have been

transfered to the one–dimensional hybrid simulations which ensures that the

particles leaving the domain reach Bohm velocity. Interestingly when omitting

these methods, simulations yield the same results. Thus a different way of

interpreting plasma–wall interactions is provided in the following chapter on

which the simulation of this thesis rely.
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Chapter 6

Interpretation of walls as

the cause for shocks

In the hybrid simulations as described in the previous chapter 5, the Bohm cri-

terion seems to be automatically fulfilled, since particles are leaving the domain

with Bohm velocity vB without imposing any boundary condition at all. Only

the removal of ions in the ghost cells seems to cause this effect, which leads

to the assumption that a different kind of physical mechanism is presumably

taking place. In this context, the occurring process is recognized by the buildup

of discontinuities in the plasma quantities due to the presence of walls, thus

interpreting the plasma–wall transition in a new manner as a stationary shock.

In this chapter, explanations to support this proposition are carried out with

jump conditions. Firstly, investigations are considered in the electrostatic case,

resulting in Rankine–Hugoniot conditions, and are then generalized on magnetic

fields.

6.1 Jump conditions

6.1.1 Jump conditions in the absence of magnetic fields

In order to derive proper jump conditions, the ion mass transport equation (4.1)

is considered as well as the total momentum balance equation (4.7). In the

proposed model from chapter 3, no ionization is assumed in front of the walls

yielding vanishing source densities. Since the electrostatic case is considered

here, the magnetic field is omitted, so that the basic equations for the following

examination are

∇ · (niui) = 0, ∇ · (niuiui) = −c2s (∇ni).
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Here, it is sufficient to consider only the velocity component in parallel di-

rection of the surface normal n̂ = êx because the other components are not

influenced by any force in the one–dimensional model and are thus constants.

∂x(niuix) = 0 ∂x(niu
2
ix) + c2s (∂xni) = 0

Integrating these two equations in a small domain around the modeled position

of the sheath edge at x = x2 yields a set of two equations, which can be rear-

ranged to find the ratios of adjacent values of density and velocity respectively.

xr∫
xl

∂x(niuix) dx = nrur − nlul = 0

xr∫
xl

[
∂x(niu

2
ix) + c2s (∂xni)

]
dx = nru

2
r + c2snr − nlu

2
l − c2snl = 0

where the following quantities are introduced for convenience for small lengths ε.

xr := x2 + ε xl := x2 − ε

ur := uix (xr) ul := uix (xl) nr := ni (xr) nl := ni (xl)

A common representation of these equations is

[niuix]
r
l = 0

[
niu

2
ix + c2sni

]r
l
= 0 (6.1)

where [f ]rl = fr − fl is a usual notation with f an arbitrary expression.

The latter expression yields a quadratic equation in ur after elimination of

the density in terms of the former one

u2
r − ur

(
c2s
ul

− ul

)
+ c2s = 0

so that the solution of this set of equations becomes

ur =
1

2

[
c2s
ul

+ ul ±
(
c2s
ul

− ul

)]
∈
{
c2s
ul
, ul

}
nl

nr
=

ur

ul
∈
{
c2s
u2
l

, 1

}
.

The second set of solutions represents the trivial, constant solution whereas the

first set describes a discontinuity in both velocity and density.

In simulation smooth profiles of the plasma quantities are observed. The

two branches of the solutions on each side of the sheath edge are only merging

in terms of the above presented explanations if ur = ul = cs is fulfilled, thus

forcing a discontinuity by removing particles at the domain border automatically

conforms to the Bohm criterion.
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Figure 6.1: Sketch of a electrostatic sheath interpreted as a discontinuous
stream.

6.1.2 Jump conditions with magnetic fields

The jump conditions for the electrostatic case provide a possible explanation

for the fulfillment of the Bohm criterion, which may justify the generalization

on jump conditions for arbitrary magnetic fields. Considering Ampère’s law

∇×B = µ0j = µ0Zeni (ui − ue)

and further applying the vector identity

(∇×B)×B = ∇ · (BB)−∇ ·
(
B2

2

)
,

the total momentum balance equation (4.6) reads

∇ ·
[
miniuiui +mic

2
sni1− 1

µ0

(
BB− B2

2
1

)]
= 0

in the ionization–free border region, where sp = 0 applies. This equation is

similar to the momentum equation of ideal magnetohydrodynamics in the sta-

tionary case (∂t = 0). Additionally considering the mass transport equation

and boundary conditions on the electric and the magnetic field, respectively,

the jump conditions can be set up. [BS03]

[niui · n̂]rl = 0[
miniui (ui · n̂) +

(
mic

2
sni +

B2

2µ0

)
n̂− (B · n̂) B

µ0

]r
l

= 0

[B · n̂]rl = 0

[n̂×E]
r
l = 0
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In the presented one–dimensional model with n̂ = êx, the induced magnetic

field is neglected compared to the external, constant magnetic field. Further-

more, the electric field is designed to be constant in y– and z–direction, so that

the above presented jump conditions reduce to the ones from the electrostatic

case presented in equation (6.1), thus yielding the same results.

[niuix]
r
l = 0

[
niu

2
ix + c2sni

]r
l
= 0
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Chapter 7

Comparison of hybrid and

fluid results

Up to this point, the fundamental system of differential equations for the two–

fluid model (4.10), (4.11), (4.12) is provided with different ionization models

from chapter 3. In this section, solutions for these equations are compared with

the hybrid simulation results for different magnetic fields and source densities.

The differential equations are going to be simplified as much as possible, so that

an analytical solution is achievable in some cases.

In the beginning of each of the following sections, the equations are ana-

lyzed without any sources, which corresponds to the border region in which

no ionization takes place. For the examination of the ionization domain, these

terms are included, so that the whole domain can then be described. Afterwards

these combined solutions are compared with the simulation results using proper

boundary conditions which are read out from the corresponding simulations.

7.1 Considering the absence of magnetic fields

7.1.1 Analytic fluid approach

Without magnetic field the x–component of the momentum balance (4.10) be-

comes (
uix −

c2s
uix

)
∂xuix =

uix

(niuix)0 + Sn

(
spx − sn

(
uix +

c2s
uix

))
.
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Omitting both source terms to describe the border region, the above equation

is only solved by constant solutions in uix.(
uix −

c2s
uix

)
∂xuix = 0

For uix = cs the equation becomes singular. Since the border region is in contact

with the wall, this specific solution fulfills the Bohm criterion from chapters 2

and 6, respectively, which will be used as a boundary condition for the ionization

region in the upcoming part.

Fluid approach without momentum source

Leaving out the momentum source density sp = 0 and thus assuming ionization

from resting neutral gas the momentum balance reduces to

(
uix −

c2s
uix

)
∂xuix =

−sn(u
2
ix + c2s )

(niuix)0 + Sn
⇔

uix − c2s
uix

u2
ix + c2s

∂xuix =
−sn

(niuix)0 + Sn
.

Integration from inside the ionization domain to its border yields

x1∫
x

uix − c2s
uix

u2
ix + c2s

∂xuix dx =

x1∫
x

−sn(x
′)

(niuix)0 + Sn(x′)
dx′ .

Both integrals can be solved by substitution and further inserting the continuity

condition from equation (3.12) yields a quadratic equation that can be solved.

ln

 uix +
c2s
uix

uix1 +
c2s
uix1

 = ln

(
(niuix)0 + Sn(x1)

(niuix)0 + Sn(x)

)
= ln

(
(niuix)1

(niuix)0 + Sn(x)

)

⇔ uix +
c2s
uix

=
(niuix)1

(
uix1 +

c2s
uix1

)
(niuix)0 + Sn(x)

=: p(x)

⇔ u2
ix − p(x)uix + c2s = 0

⇔ uix(x) =
p(x)

2
±
√

p2(x)

4
− c2s

The solution with the upper sign runs into a singularity, if the denominator

of p(x) becomes zero. The corresponding density profile can be obtained by

inserting the velocity profile in the integrated mass transport equation (4.9).
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ni(x) =
(niuix)0 + Sn(x)

uix(x)
=

(niuix)0 + Sn(x)

p(x)
2 ±

√
p(x)2

4 − c2s

= ((niuix)0 + Sn(x))

p(x)
2 ∓

√
p(x)2

4 − c2s
p(x)2

4 −
(

p(x)2

4 − c2s

)
=

(niuix)0 + Sn(x)

c2s

(
p(x)

2
∓
√

p(x)2

4
− c2s

)

This representation of uix and ni switches signs when passing x0 = 0, thus

combining both solutions from the quadratic equation. This can be corrected

by matching both branches to one specific type of solution with the following

modification.

uix(x) =
p(x)

2
± sign(p(x))

√
p(x)2

4
− c2s

ni(x) =
(niuix)0 + Sn(x)

c2s

(
p(x)

2
∓ sign(p(x))

√
p(x)2

4
− c2s

)

These equations still contain both solutions from the quadratic equation. Ob-

viously only the one with the lower sign represents the model, because it repro-

duces the acceleration to the walls and the increase in density in the domain

center caused by ionization. Thus the other one will be discarded for the re-

maining part of this section.

Continuing the ion sound velocity from the border region according to the

foregoing section and considering the symmetry of the profiles, two boundary

conditions can be specified.

uix1 = cs and (niuix)0 = 0 (7.1)

The remaining one (niuix)1 will be obtained from simulation. Now density and

velocity profiles can be written in their final form as

uix(x) = cs

 (niuix)1
Sn(x)

− sign(Sn(x))

√(
(niuix)1
Sn(x)

)2

− c2s


=

(niuix)1cs
Sn(x)

1− sign((niuix)1)

√
1−

(
Sn(x)cs
(niuix)1

)2
 (7.2)

ni(x) =
Sn(x)

cs

 (niuix)1
Sn(x)

+ sign(Sn(x))

√(
(niuix)1
Sn(x)

)2

− 1


=

(niuix)1
cs

1 + sign((niuix)1)

√
1−

(
Sn(x)

(niuix)1

)2
 . (7.3)



7.1 Considering the absence of magnetic fields 39

To obtain the shape of the profiles the integrated ionization source density

Sn has to be specified. The results for the constant source density as specified

in equation (3.5) are plotted in Fig. 7.1. It is worth mentioning that the density

profile becomes a semicircle here. The same is displayed for the raised cosine

source density from equation (3.6) in Fig. 7.2.

x
−x1 x1

ni

ni(x1)

2ni(x1)

(a) Ion density ni(x).

x−x1 x1

uix

−cs

cs

(b) Ion velocity uix(x).

Figure 7.1: Density and velocity profiles for the case without magnetic field
and momentum source. Ionization is described by the constant distribution.
The boundary conditions from equation (7.1) are applied. Solution without
singularities at the domain center is chosen.

x
−x1 x1

ni

ni(x1)

2ni(x1)

(a) Ion density ni(x).

x−x1 x1

uix

−cs

cs

(b) Ion velocity uix(x).

Figure 7.2: Density and velocity profiles for the case without magnetic field and
momentum source. Ionization is described by the raised cosine distribution.
The boundary conditions from equation (7.1) are applied. Solution without
singularities at the domain center is chosen.
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Fluid approach with both ionization and momentum source

Considering ionization from a comoving gas background yields a momentum

source density of sp = snu that reduces the momentum balance (4.10) to(
uix −

c2s
uix

)
∂xuix =

−snc
2
s

(niuix)0 + Sn
.

Just as in the previous section, this expression is integrated from inside the

ionization domain to its border and is simplified with the continuity condition

(3.12).

x1∫
x

(
uix −

c2s
uix

)
∂xuix dx =

x1∫
x

−sn(x
′)c2s

(niuix)0 + Sn(x′)
dx′

⇔ u2
ix

2
− u2

ix1

2
+ c2s ln

(
uix1

uix

)
= c2s ln

(
(niuix)0 + Sn(x1)

(niuix)0 + Sn(x)

)
⇔ u2

ix

2
+ c2s ln

(
uix1

uix

)
=

u2
ix1

2
+ c2s ln

(
(niuix)1

(niuix)0 + Sn(x)

)
The result is an implicit equation. However spatial profiles of ion fluid veloc-

ity and density can be received by integrating the corresponding differential

equation numerically.

7.1.2 Hybrid simulation results

Up to this point, the momentum balance without a magnetic field for different

source densities has been solved analytically. Now simulations with the hybrid

model from chapter 4.2 are performed for comparison. Before showing and

discussing the simulation results, the used simulation parameters are provided

as well as how the plasma is initialized. These parameters, if not specified else,

are applied on the other simulation runs with magnetic fields, too.

Splines of second order are used to collect and distribute moments which

imply two ghost cells on each side of the domain. Each cell except for the

ghost cells is initialized with a specific amount of equally spaced particles, so

that the simulation starts at a homogeneous density n = n̊ and zero velocity

ui = 0. The amount of cells is set to Ncells = 600 which provides a decent

resolution of the collected moments in the domain. The number of particles

per cell needs to be sufficiently large to reproduce the complex dynamics of

plasmas correctly, but without wasting computational resources. As a decision

support, a comparison of simulation runs is provided in Fig. 7.3 in which this
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Figure 7.3: Ion density ni and velocity uix profiles for different numbers of
particles per cell Np/c. The simulation parameters are set to B = 0, ν̂ie =
0, sn = Afcd(x), sp = 0.
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parameter is varied. This sample configuration corresponds to the case without

magnetic fields, momentum sources and collisions with a constant ionization

source density sn for which analytic profiles have been derived in the fluid model

(see Fig. 7.1). The results will be discussed later in detail. The profiles in

Fig. 7.3a and Fig. 7.3b appear to be quite noisy, but there is not much of a

difference between the simulation results from Fig. 7.3c and 7.3d, so that the

parameters concerning the amount of particles are set to those corresponding

to the former case.

Ncells = 600, Nparticles/cell = 200 ⇒ Nparticles = 119 200.

The size of the ionization domain is chosen to be half the complete domain,

whose size is arbitrarily set to one, so that the width of each cell ∆x becomes

x1 = 0.5, x2 = 1 ⇒ ∆x =
2x2

Ncells
=

1

300
.

Due to the extent of the upcoming investigations, it is waived here to examine

cases with non–vanishing electric fields Ey, Ez and wall current densities jw.

Ey = 0 Ez = 0 jw = 0

Since now the simulation parameters are specified, the simulations can be

performed and their results will be examined in the following. In Fig. 7.4 the

results of a simulation run are displayed in which the ionization source density

sn is constant. In addition, no collisions or momentum sources are taken into

account. The displayed results are the collected moments out of the simulation

domain. Thus each data point corresponds to one specific cell. Since there are

two ghost cells on each side and the second order spline function has a width of

three cells, the last five cells of each plot do not have any physical meaning and

are thus accounted as numerical artifacts. The continuous lines correspond to

the numerical integration of the two–fluid equations as discussed in the previous

part of this chapter.

The shapes of both simulation and two–fluid results are similar. However,

the simulation result for the ion velocity exceeds the two–fluid solution in the

border region of the domain. The opposite is true for the ion density. Taking a

look at the temperature provides an explanation because the ion temperature

is not zero as assumed in the two–fluid solution. Inserting particles with zero

velocity yields a broadening of the ion velocity distribution and therefore an

increase of their temperature, that also affects the sound velocity in the border

region on which the ions are accelerated.
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To counteract the temperature rise, simulations with electron–ion collisions

have been performed whose results are provided in Fig. 7.5. In the border region,

it is observable that the ion temperature decreases towards the walls. However,

due to ionization from a resting gas background and thus supplying ions with

zero momentum, the ion temperature still differs from zero in the ionization

region.

Another approach to prevent any increase of the ion temperature is to include

the momentum source term as discussed in chapter 3 since the ions are inserted

with their average velocity here. Both profiles of simulation and fluid model are

in agreement as shown in Fig. 7.6 although they appear more noisy compared

to the case without any momentum source. The ion temperature still differs

from zero in the ionization region, though.

To check whether the discontinuous ionization source density sn, as used

until now, has any effect on the accordance of the simulation and fluid profiles,

simulations have been performed with a smooth raised cosine ionization source

density sn with similar simulation parameters. Their results are displayed in

Fig. 7.7 to 7.9. In comparison to the previous simulation runs, similar state-

ments about the profiles in terms of temperatures are possible. However, for the

raised cosine source density it does not appear that both fluid and simulation

results seem to be in better agreement in comparison to the constant source

density. This allows the conclusion that the continuity of the ionization source

density does not seem to have any influence on the difference between the hybrid

simulation and fluid results.

Table 7.1: Overview of the set of parameters for the presented results in the
absence of magnetic fields.

B ν̂ie sn sp Figure

0 0 Afcd 0 7.4
0 1 Afcd 0 7.5
0 0 Afcd snu 7.6
0 0 Afrcd 0 7.7
0 1 Afrcd 0 7.8
0 0 Afrcd snu 7.9
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Figure 7.4: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 0, sn = Afcd(x), sp = 0. For
the fluid solution the following boundary conditions were used n0 = 1.54, uix0 =
10−6, (niuix)1 = 0.7735.



7.1 Considering the absence of magnetic fields 45

v i
x
α
/
c s
(T

i
=

0)

-2

-1

0

1

2

x / l̊
-1 -0.5 0 0.5 1

(c) Particle velocities vix.

u
ix

/
c s
(T

i
=

0)

-1.5

-1

-0.5

0

0.5

1

1.5

x / l̊
-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(d) Ion velocity uix.

Figure 7.4: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 0, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.54, uix0 = 10−6, (niuix)1 = 0.7735.
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Figure 7.5: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 1, sn = Afcd(x), sp = 0. For
the fluid solution the following boundary conditions were used n0 = 1.56, uix0 =
10−6, (niuix)1 = 0.7816.
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Figure 7.5: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.56, uix0 = 10−6, (niuix)1 = 0.7816.
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Figure 7.6: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 0, sn = Afcd(x), sp =
snu. For the fluid solution the following boundary conditions were used n0 =
1.33, uix0 = 10−6, (niuix)1 = 0.8090.
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Figure 7.6: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 0, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.33, uix0 = 10−6, (niuix)1 = 0.8090.
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Figure 7.7: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 0, sn = Afrcd(x), sp = 0. For
the fluid solution the following boundary conditions were used n0 = 1.72, uix0 =
10−6, (niuix)1 = 0.8612.
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Figure 7.7: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 0, sn =
Afrcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.72, uix0 = 10−6, (niuix)1 = 0.8612.
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Figure 7.8: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 1, sn = Afrcd(x), sp = 0. For
the fluid solution the following boundary conditions were used n0 = 1.73, uix0 =
10−6, (niuix)1 = 0.8649.
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Figure 7.8: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 1, sn =
Afrcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.73, uix0 = 10−6, (niuix)1 = 0.8649.
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Figure 7.9: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 0, ν̂ie = 0, sn = Afrcd(x), sp =
snu. For the fluid solution the following boundary conditions were used n0 =
1.41, uix0 = 10−6, (niuix)1 = 0.8551.
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Figure 7.9: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 0, ν̂ie = 0, sn =
Afrcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.41, uix0 = 10−6, (niuix)1 = 0.8551.
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7.2 Considering a magnetic field parallel to the

walls

7.2.1 Analytic fluid approach

With a magnetic field parallel to the walls B = Byey, the x– and z–component

of the momentum balance (4.10) and (4.12) become(
uix −

c2s
uix

)
∂xuix = − (uiz − uez)Ωiy +

uix

(niuix)0 + Sn

(
spx − sn

(
uix +

c2s
uix

))
,

uix∂xuiz = (uix − uex)Ωiy +
uix

(niuix)0 + Sn
(spz − snuiz) .

Inserting the electron velocities (4.13) and (4.15) decouples this system of dif-

ferential equations, so that each equation can be solved independently.

(
uix −

c2s
uix

)
∂xuix =

−Ωiy

(
uix − j̃w

ni

)
− Ẽz

νie
Ωiy

+
uix

(niuix)0 + Sn

(
spx − sn

(
uix +

c2s
uix

))
uix∂xuiz =

j̃w
ni

Ωiy +
uix

(niuix)0 + Sn
(spz − snuiz)

⇔ ∂xuiz =
j̃w

niuix
Ωiy +

spz − snuiz

(niuix)0 + Sn

Considering the dependency of the collision frequency on the ion density (3.2)

and eliminating the latter by means of equation (4.9) yields the final represen-

tation of the differential equations to be solved for a magnetic field parallel to

the modeled walls.(
uix −

c2s
uix

)
∂xuix =

uix

(niuix)0 + Sn

(
−
Ω2

iy

ν̂ie
uix + spx − sn

(
uix +

c2s
uix

)
− ẼzΩiy

ν̂ie

)

+

(
uix

(niuix)0 + Sn

)2 Ω2
iyj̃w

ν̂ie

∂xuiz =
j̃wΩiy + spz − snuiz

(niuix)0 + Sn
(7.4)

Fluid approach without any sources

In the ionization–free border region (x > x1) the integrated ionization source

density Sn is constant. Inserting equation (3.12) which describes this circum-

stance into the above equations yields
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(
uix −

c2s
uix

)
∂xuix =

Ωiy

(niuix)1ν̂ie

[(
jw

(niuix)1
− 1

)
Ωiyu

2
ix − Ẽzuix

]
= a2u

2
ix + a1uix,

∂xuiz =
j̃wΩiy

(niuix)1
= const.,

where the constants a2 and a1 are introduced for convenience.

a2 =
Ω2

iy

(niuix)1ν̂ie

(
jw

(niuix)1
− 1

)
a1 = − ΩiyẼz

(niuix)1ν̂ie

Integration of the z–component from the ionization border to the border

region is trivial and leads to a linear behavior of the ion fluid velocity in z–

direction corresponding to j×B forces.

x∫
x1

∂x′uiz dx
′ = uiz − uiz1 =

x∫
x1

j̃wΩiy

(niuix)1
dx′ =

j̃wΩiy

(niuix)1
(x− x1)

⇔ uiz = uiz1 +
j̃wΩiy

(niuix)1
(x− x1)

To calculate the x–component, partial fraction decomposition is necessary

to solve the occurring integrals

x∫
x1

dx′ = x− x1

=

x∫
x1

uix − c2s
uix

a2u2
ix + a1uix

∂x′uix dx
′ =

uix∫
uix1

 a2c
2
s

a21u
′
ix

− c2s
a1u′2

ix

+
1− c2s

a2
2

a2
1

a2u′
ix + a1

 du′
ix

=
a2c

2
s

a21
ln

(
uix

uix1

)
+

c2s
a1

(
1

uix
− 1

uix1

)
+

(
1

a2
− c2s

a2
a21

)
ln

(
a2uix + a1
a2uix1 + a1

)
yielding an implicit equation.

This solution does not apply for the case without any electric field Ey =

0 since it becomes singular. Instead the original differential equation can be

integrated easily

x∫
x1

a2 dx
′ =

x∫
x1

(
1

uix
− c2s

u3
ix

)
∂x′uix dx

′

⇔ a2(x− x1) = ln

(
uix

uix1

)
+

c2s
2

(
1

u2
ix

− 1

u2
ix1

)
again yielding an implicit equation. This case corresponds to the investigations

of Alterkop et al., which was supplemented here by a non–vanishing wall current
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density jw and additional constant electric fields parallel to the wall Ey, Ez.

Their results conform to the above equation. They also note that the ions are

mainly accelerated in a layer of thickness ∼ri(cs)/β(x2) with ri(cs) = Ωiy/cs the

ion gyro radius at sound velocity and β(x2) = Ωiy/νie(x2) the Hall parameter

at the sheath edge x = x2. This observation is described by the factor a2 in the

above presented solution. Applying conservation of ion mass (4.9), splitting the

boundary condition of the ion flux to density and velocity and substituting the

collision term (3.2) reveals

a2 =
Ω2

iy

(niuix)1ν̂ie
=

Ω2
iy

(niuix)2ν̂ie
=

Ω2
iy

ni2uix2ν̂ie
=

Ω2
iy

uix2νie(x2)
=

β(x2)

ri(uix2)
(7.5)

where the numerical indexes correspond to boundary conditions at positions x1

and x2, respectively. Thus the results of Alterkop et al. are reproduced as long

as the Bohm criterion is respected uix2 = cs. [AGB05]

Fluid approach without momentum source

Assuming ionization from resting neutral gas sets the momentum source den-

sity to zero sp = 0. The following considerations omits the wall current density

jw = 0 since its additional ion density term makes an analytical solution of

the x–component impossible. Secondary, these investigations only consider a

constant ionization source density sn = const. that allows an analytical solu-

tion by separation of variables. For the cosine–shaped ionization source density

only the numerical profiles along with the hybrid simulation results are provided

later.(
uix −

c2s
uix

)
∂xuix =

uix

(niuix)0 + Sn

(
−
Ω2

iy

ν̂ie
uix − sn

(
uix +

c2s
uix

)
− ẼzΩiy

ν̂ie

)
∂xuiz =

−snuiz

(niuix)0 + Sn

Integrating the z–component of the total momentum equation from inside

the ionization domain to its border yields

x1∫
x

1

uiz
∂x′uiz dx =

x1∫
x

−sn
(niuix)0 + Sn

dx.

Solving the above integrals is possible by substitution and additionally applying

the continuity condition from equation (3.12), which leads to the final expression
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for the ion fluid velocity in z–direction.

ln

(
uiz1

uiz

)
= ln

(
(niuix)0 + Sn(x1)

(niuix)0 + Sn(x)

)
= ln

(
(niuix)1

(niuix)0 + Sn(x)

)
⇔ uiz = uiz1

(niuix)0 + Sn(x)

(niuix)1

The x–component of the momentum balance can be solved by following the

subsequent steps. Firstly, the polynomial in the denominator on the right hand

side of the equation is sorted

(
uix −

c2s
uix

)
∂xuix =

1

(niuix)0 + Sn

[(
−
Ω2

iy

ν̂ie
− sn

)
u2
ix −

ẼzΩiy

ν̂ie
uix − snc

2
s

]

=
a2u

2
ix + a1uix + a0
(niuix)0 + Sn

with constants

a2 = −
Ω2

iy

ν̂ie
− sn, a1 = − ẼzΩiy

ν̂ie
, a0 = −snc

2
s .

Secondly, after separating the variables, partial fraction decomposition is ap-

plied, so that each summand can be integrated

1

(niuix)0 + Sn
=

uix − c2s
uix

a2u2
ix + a1uix + a0

∂xuix =

(
b0
uix

+
b2uix + b1

a2u2
ix + a1uix + a0

)
∂xuix

with constants

b2 = 1 + c2s
a2
a0

= 2 +
Ω2

iy

ν̂iesn
, b1 = c2s

a1
a0

= − ΩẼz

ν̂iesn
, b0 = − c2s

a0
= sn.

Finally, the integration from inside the ionization domain to its border yields

x1∫
x

1

(niuix)0 + Sn
dx′ =

x1∫
x

(
b0
uix

+
b2uix + b1

a2u2
ix + a1uix + a0

)
∂x′uix dx

′

and inserting the continuity condition (3.12) yields an implicit equation

ln

(
(niuix)1

(niuix)0 + Sn

)
= ln

(
uix1

uix

)
+

1

2

(
sn
a2

− 1

)
ln

(
a2u

2
ix1 + a1uix1 + a0

a2u2
ix + a1uix + a0

)
− a1√

4a2a0 − a21

(
sn
a2

+ 1

)[
arctan

(
2a2uix1 + a1√
4a2a0 − a21

)
− arctan

(
2a2uix + a1√
4a2a0 − a21

)]
.

It is noted here that the arc tangent term originates from the constant electric

field Ey and vanishes for Ey = 0.



60 Comparison of hybrid and fluid results

Fluid approach with both ionization and momentum source

Ionization from a comoving gas background sets the momentum source density

to sp = snui. Again, only the case with a constant ionization source density

sn = const. and without a wall current density jw = 0 is considered due to

the same reasons as in the previous case.

(
uix −

c2s
uix

)
∂xuix =

uix

(niuix)0 + Sn

(
−
Ω2

iy

ν̂ie
uix − sn

c2s
uix

− ẼzΩiy

ν̂ie

)
∂xuiz = 0

Here, the z–component of the momentum balance just yields a constant fluid

velocity uiz.

x1∫
x

∂x′uiz dx = 0 ⇔ uiz = uiz1

The x–component of the momentum balance only differs from the case above

by the coefficients, thus resulting in the same implicit equation for different

constants, namely

a2 = −
Ω2

iy

ν̂ie
, a1 = − ẼzΩiy

ν̂ie
, a0 = −snc

2
s .

7.2.2 Hybrid simulation results

Currently, the total momentum equation was only solvable with restrictions on

different parameters and yielded implicit equations after integration. Now the

numerical integration of the differential equations from the fluid model along

with the hybrid simulation results are provided in the following.

As stated by Alterkop et al. and confirmed in equation (7.5), the ions are

mainly accelerated in a layer before the walls of size ∼ri(cs)/β(x2) which means

that its size is dependent on the magnetic field By on the one hand and the

collision frequency at the walls νie(x2) on the other. Since the influence of

the collision frequency along with its effect on the ion temperature has been

discussed in the previous section 7.1, only the magnetic field By will be varied

to investigate this dependency while keeping the collision frequency parameter

ν̂ie constant. This is performed in various simulation runs, whose results are

displayed along with the velocities in z–direction in Fig. 7.10 to 7.12. Here a

constant ionization source density sn = Afcd is set while assuming a comoving

gas background sp = snui. To examine the influence of the momentum source

density, simulation results with ionization from a resting gas background sp = 0
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and By = 1 are pictured in 7.14. Finally simulation runs with the cosine–shaped

ionization source density sn = Afrcd and By = 1 were performed with sp = 0

(Fig. 7.15) and sp = snui (Fig. 7.13).

In the following the profiles of density ni and average velocity in x–direction

uix for different magnetic fields are discussed, which can be categorized in three

different cases. For strongly magnetized plasmas ri(cs) � x2 the acceleration

of the ions mainly happens in the border region which is shown in Fig. 7.10.

The effect of ionization on the profiles is vanishingly small. Both profiles are

smooth compared to the other simulation results. For weakly magnetized plas-

mas ri(cs) � x2 profiles are similar to those without magnetic fields in the

ionization region, so that the ionization is the dominant process here as pic-

tured in Fig. 7.11, but in the border region where no ionization takes place, the

magnetic field is responsible for the deviation from the constant solution. For

ri(cs) ≈ x2 both ionization and magnetic field seem to play a similar role for the

profiles which can be observed in Fig. 7.12. One additional observation for the

latter two cases is, that the density profiles ni from simulation differ uniformly

from those of the numerical integration in the center of the ionization region.

This effect is not visible in the velocity profiles uix, which does not simultane-

ously mean that they do not manifest here according to equation (4.9). The

reason for this behavior is most likely explained by the magnetic field, since

it is not observable in the cases without it. Since the domain is symmetric to

its center, the positions where the particles are ionized basically determine to

which wall they will move. The gyration induced by magnetic fields disturbs the

collective motion of the ions in the domain center, which has a severe impact

on the profiles in this particular region. This anisotropic effect is most likely

responsible for the deviation from the fluid solution because only a simplified

version of the stress tensor is considered in its derivation. This is the reason

why the boundary conditions for the numerical integration of the fluid equations

were chosen so that the profiles fit the hybrid results well in the border region.

Concerning the ion velocities in z–direction, a vast deviation of the hybrid

results from the zero fluid solutions are observable. For weakly magnetized

plasmas and plasmas for which ri(cs) ≈ x2 is valid, the velocity is negatively

constant in the right side of the domain and positively constant in the left side,

yielding some kind of drift separately on each side. Both branches merge in

the center region over a similar length scale for both cases, which is most likely

caused by the same reason of ions moving in separate directions as already

mentioned above. For the considered simulation runs ionization from a comoving

neutral gas background is assumed, so that each particle is inserted with the

respective average velocity ui at its ionization position. By doing so the inserted

particles also adapt the gyro phase of the surrounding particles, so that an



62 Comparison of hybrid and fluid results

isotropic gyro motion is happening, which is a possible explanation for the

constant solution for each separate branch. For weakly magnetized plasmas,

the constants for each branch have similar absolute values, whereas for ri(cs) ≈
x2 those are different. This is also observable in the simulation runs with a

cosine–shaped ionization density which is why it is most probably a physical

effect. To compare anyhow both hybrid and fluid results in this case, different

boundary conditions are considered for each branch, denoted by fl for the left

one and fr for the right one where f specifies the boundary condition. If only

one boundary condition is specified for the ion velocity or their flux, then f ≡
fr = −fl applies.

When ionization from a neutral gas background is considered, the velocities

differ from constants which can be seen in Fig. 7.14 and 7.15. Here, the average

velocity uiz again diverges in the center region, but relaxes to zero at the walls,

where it gets more and more diffuse. Each branch here is rather noisy compared

to the case with a comoving gas background. Contrary to the comoving case,

the ions are inserted with zero velocity and are thus not assigned to any gyro

phase at all. They start gyrating after initial acceleration by the electric field,

thus yielding rather evenly distributed gyro phases, which may be the reason for

the observed behavior. Unlike the hybrid results, the fluid solution falls down

to zero after a very short length for sp=0, since equation (7.4) gets singular at

x=0. This indicates that the differences between both results are most likely

caused by kinetic effects, which is why uiz0 = 0 is chosen to be the boundary

condition for the upcoming presentation of the results in Fig. 7.14 and 7.15.

For strongly magnetized plasmas, the ion velocity uiz is only zero in the

ionization region and diffuses in the border region. In the beginning of the

simulation this diffusive part is localized at the walls and then propagates grad-

ually deeper into the plasma up to the ionization domain, extending into it in

the same magnitude for both sides.

For completeness, results from simulation runs corresponding to ri(cs) ≈ x2

with the cosine–shaped ionization source density sn = Afrcd are provided in

Fig. 7.13 and Fig. 7.15. Apart from differently shaped profiles, a smooth source

density does not seem to make any difference in comparison to the constant one

aside from the previously stated effects.
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Table 7.2: Overview of the set of parameters for the presented results in the
case of a magnetic field parallel to the modeled walls.

Bx By ν̂ie sn sp Figure

0 10 1 Afcd snu 7.10
0 0.1 1 Afcd snu 7.11
0 1 1 Afcd snu 7.12
0 1 1 Afrcd snu 7.13
0 1 1 Afcd 0 7.14
0 1 1 Afrcd 0 7.15
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Figure 7.10: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 10, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.356, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.01195.
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(d) Ion velocity uix.

Figure 7.10: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 10, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.356, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.01195.
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Figure 7.10: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 10, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.356, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.01195.
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Figure 7.11: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 0.1, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.29, uix0 = 10−6, uiz0l = 0.0066, uiz0r = −0.0054, (niuix)1 =
0.7851.
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Figure 7.11: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 0.1, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following bound-
ary conditions were used n0 = 1.29, uix0 = 10−6, uiz0l = 0.0066, uiz0r =
−0.0054, (niuix)1 = 0.7851.
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Figure 7.11: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 0.1, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following bound-
ary conditions were used n0 = 1.29, uix0 = 10−6, uiz0l = 0.0066, uiz0r =
−0.0054, (niuix)1 = 0.7851.
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Figure 7.12: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 1, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.26, uix0 = 10−6, uiz0l = 0.11, uiz0r = −0.052, (niuix)1 =
0.4931.
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Figure 7.12: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary condi-
tions were used n0 = 1.26, uix0 = 10−6, uiz0l = 0.11, uiz0r = −0.052, (niuix)1 =
0.4931.
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Figure 7.12: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary condi-
tions were used n0 = 1.26, uix0 = 10−6, uiz0l = 0.11, uiz0r = −0.052, (niuix)1 =
0.4931.
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Figure 7.13: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 1, ν̂ie = 1, sn =
Afrcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.31, uix0 = 10−6, uiz0l = 0.082, uiz0r = −0.021, (niuix)1 =
0.4862.
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Figure 7.13: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afrcd(x), sp = snu. For the fluid solution the following bound-
ary conditions were used n0 = 1.31, uix0 = 10−6, uiz0l = 0.082, uiz0r =
−0.021, (niuix)1 = 0.4862.
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Figure 7.13: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afrcd(x), sp = snu. For the fluid solution the following bound-
ary conditions were used n0 = 1.31, uix0 = 10−6, uiz0l = 0.082, uiz0r =
−0.021, (niuix)1 = 0.4862.
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Figure 7.14: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 1, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.3, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4661.
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Figure 7.14: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.3, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4661.
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Figure 7.14: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.3, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4661.



7.2 Considering a magnetic field parallel to the walls 79

n
i
/
n̊

0

0.5

1

1.5

x / r̊i

-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(a) Ion density ni.

T
i
/
T
e

0

0.02

0.04

0.06

0.08

x / r̊i

-1 -0.5 0 0.5 1

(b) Ion temperature Ti normalized on constant electron temperature Te.

Figure 7.15: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with Bx = 0, By = 1, ν̂ie = 1, sn =
Afrcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.37, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4708.



80 Comparison of hybrid and fluid results

v i
x
α
/
c s
(T

i
=

0)

-2

-1

0

1

2

x / r̊i

-1 -0.5 0 0.5 1

(c) Particle velocities vix.

u
ix

/
c s
(T

i
=

0)

-1.5

-1

-0.5

0

0.5

1

1.5

x / r̊i

-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(d) Ion velocity uix.

Figure 7.15: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afrcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.37, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4708.
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Figure 7.15: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with Bx = 0, By = 1, ν̂ie =
1, sn = Afrcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.37, uix0 = 10−6, uiz0 = 0, (niuix)1 = 0.4708.
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7.3 Considering an arbitrary magnetic field

For this case the whole system of differential equations (4.10), (4.11) and (4.12),

along with the electron velocities (4.13), (4.14) and (4.15) needs to be considered.

Due to complexity by the high coupling of the equations, an analytical approach

to solve them is waived here. Instead the numerical results are directly provided

with the simulation results in the following section.

7.3.1 Hybrid simulation results

To investigate the effect of the x–component of the magnetic field Bx, it will be

varied in the following considerations. To be more precise, the absolute value

of the magnetic field B is kept constant, while its impact angle α on the wall

surface is varied.

Bx = B cos(α) By = B sin(α)

In the following, simulation results are presented with a constant ionization

source density sn = Afcd, because no additional characteristics have been iden-

tified with the smooth cosine–shaped one, even with a magnetic parallel to the

walls. The impact angle α as well as the magnetic field strength B will be al-

tered, while ionization from a comoving neutral gas background is considered.

For comparison simulations are repeated with ionization from a resting neutral

gas background just for one case of the above chosen magnetic fields.

Again apart from differently shaped profiles and the previously presented

deviations from the fluid solutions, the hybrid simulation results coincide as

expected with those of the numerical integration of the fluid equations for the

weakly magnetized cases in Fig. 7.16 to 7.19.

For strongly magnetized plasmas, the simulation run with a small impact

angle α, whose results are displayed in Fig. 7.20, resembles the fluid solution

as anticipated. The simulation results for a high impact angle α, displayed in

Fig. 7.21, appear very noisy, but still describe the fluid results. Interestingly the

shapes of the average velocity in z–direction uiz are similar for both the hybrid

and fluid results here, although they do not look intuitive at all.
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Table 7.3: Overview of the set of parameters for the presented results in the
case of an arbitrary magnetic field.

B α ν̂ie sn sp Figure

1 5◦ 1 Afcd snu 7.16
1 45◦ 1 Afcd snu 7.17
1 5◦ 1 Afcd 0 7.18
1 45◦ 1 Afcd 0 7.19
10 5◦ 1 Afcd snu 7.20
10 45◦ 1 Afcd snu 7.21



84 Comparison of hybrid and fluid results

n
i
/
n̊

0

0.5

1

1.5

x / r̊i

-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(a) Ion density ni.

T
i
/
T
e

0

0.02

0.04

0.06

0.08

x / r̊i

-1 -0.5 0 0.5 1

(b) Ion temperature Ti normalized on constant electron temperature Te.

Figure 7.16: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with B = 1, α = 5◦, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.22, uix0 = 10−6, uiy0 = 0, uiz0l = 0.058, (niuix)1l =
−0.4589, uiz0r = −0.12, (niuix)1r = 0.4648.
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Figure 7.16: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary con-
ditions were used n0 = 1.22, uix0 = 10−6, uiy0 = 0, uiz0l = 0.058, (niuix)1l =
−0.4589, uiz0r = −0.12, (niuix)1r = 0.4648.
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Figure 7.16: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary con-
ditions were used n0 = 1.22, uix0 = 10−6, uiy0 = 0, uiz0l = 0.058, (niuix)1l =
−0.4589, uiz0r = −0.12, (niuix)1r = 0.4648.
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Figure 7.16: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary con-
ditions were used n0 = 1.22, uix0 = 10−6, uiy0 = 0, uiz0l = 0.058, (niuix)1l =
−0.4589, uiz0r = −0.12, (niuix)1r = 0.4648.
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Figure 7.17: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with B = 1, α = 45◦, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.24, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.6269.
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Figure 7.17: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.24, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.6269.
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Figure 7.17: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.24, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.6269.
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Figure 7.17: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.24, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.6269.
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Figure 7.18: Comparison of profiles from numerical integration of fluid equations
with hybrid simulation results with B = 1, α = 5◦, ν̂ie = 1, sn = Afcd(x), sp =
0. For the fluid solution the following boundary conditions were used n0 =
1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.4684.
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Figure 7.18: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.4684.
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Figure 7.18: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.4684.
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Figure 7.18: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 5◦, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.4684.
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Figure 7.19: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with B = 1, α = 45◦, ν̂ie = 1, sn =
Afcd(x), sp = 0. For the fluid solution the following boundary conditions were
used n0 = 1.32, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.5967.
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Figure 7.19: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.32, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.5967.
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Figure 7.19: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.32, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.5967.



7.3 Considering an arbitrary magnetic field 99

v i
z
α
/
c s
(T

i
=

0)

-0.2

-0.1

0

0.1

0.2

x / r̊i

-1 -0.5 0 0.5 1

(g) Particle velocities viz.

u
iz

/
c s
(T

i
=

0)

-0.2

-0.1

0

0.1

0.2

x / r̊i

-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(h) Ion velocity uiz.

Figure 7.19: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 1, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = 0. For the fluid solution the following boundary condi-
tions were used n0 = 1.32, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.5967.
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Figure 7.20: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with B = 10, α = 5◦, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.45, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.08468.
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Figure 7.20: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.45, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.08468.
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Figure 7.20: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.45, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.08468.
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Figure 7.20: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 5◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.45, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.08468.
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Figure 7.21: Comparison of profiles from numerical integration of fluid equa-
tions with hybrid simulation results with B = 10, α = 45◦, ν̂ie = 1, sn =
Afcd(x), sp = snu. For the fluid solution the following boundary conditions
were used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 = 0.5419.
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Figure 7.21: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.5419.
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Figure 7.21: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.5419.



7.3 Considering an arbitrary magnetic field 107

v i
z
α
/
c s
(T

i
=

0)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x / r̊i

-1 -0.5 0 0.5 1

(g) Particle velocities viz.

u
iz

/
c s
(T

i
=

0)

-0.1

-0.05

0

0.05

0,1

x / r̊i

-1 -0.5 0 0.5 1

Simulation results
Fluid solution

(h) Ion velocity uiz.

Figure 7.21: (continued) Comparison of profiles from numerical integration of
fluid equations with hybrid simulation results with B = 10, α = 45◦, ν̂ie =
1, sn = Afcd(x), sp = snu. For the fluid solution the following boundary
conditions were used n0 = 1.3, uix0 = 10−6, uiy0 = 0, uiz0 = 0, (niuix)1 =
0.5419.
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Chapter 8

Summary and outlook

Regarding plasma–wall–interactions, a new type of interpretation in terms of

jump conditions has been delivered, which provides an alternative to the Bohm

theory. Interestingly both explanations lead to the same result of ions pass-

ing the sheath border with their sound velocity cs, though the approach with

jump conditions provides a more natural access to the problem and requires less

assumptions in derivation.

To further investigate the new findings in simulation, a simple one–dimensio-

nal model of a plasma discharge, surrounded by totally absorbing walls, was

introduced. It has been enhanced by an ionization source such that the system

is able to reach a stationary state.

Simulations have been performed with many different configurations of mag-

netic fields and ionization source densities. Differences between numerical so-

lutions of the fluid equations and hybrid simulation results are observable in

many cases. Kinetic effects such as ion gyro motion and heating of ions, espe-

cially caused by ionization, as well as anisotropic effects need to be considered

to properly represent plasmas as presented in the model, particularly in the

domain center for weakly magnetized plasmas and when considering a neutral

gas background. For strongly magnetized plasmas, the simulation results for

the z–component of the average ion velocity uiz get noisy for a magnetic field

parallel to the walls and for large impact angles α of the magnetic field, whereas

they appear smooth for small impact angles α.

Since this thesis provides elementary investigations and results, they are

ready to be applied on different problem statements in simulation, especially

on the PSI–2 experiment for which this thesis was originally intended. For this

purpose the presented wall model needs to be transferred to three– or rather

to two–dimensional simulations under consideration of cylindrical symmetry.

In addition its characteristics need to be specified more precisely rather than

considering basic plasma processes in general.
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A common observation in the mentioned experiment is the rotation of the

produced plasma pillar. It may be checked whether this is reproducible in hybrid

simulations, and if so, which role kinetic effects are playing. The presented

simulation results for the z–component of the ion velocities already hint at this

effect. The plasma generator of the JULE–PSI experiment, scheduled as an

enhancement of PSI–2, will provide a cathode plate instead of a hallow cathode

which can be adopted easily in simulation, so that it will be able to handle the

next generation of the experiment.
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